Vortex model of the QCD-vacuum

successes and problems

Rudolf Golubich and M.F.

in coop. with
Roman Bertle, Jeff Greensite, Michael Engelhardt, Urs M. Heller, Roman Höllwieser, Gerald Jordan, Mohsen Husseini, Štefan Olejník, Thomas Schweigler

Models of the QCD vacuum

Savvidy vacuum (1977): Infrared instability of the vacuum
dual superconductor picture: Nielsen and Olesen (1973), Nambu and
Creutz (1974), 't Hooft, Parisi, Jevicki and Senjanovic (1975),
Mandelstam (1976)
magnetic monopoles detected by Abelian Projection:
Kronfeld, Laursen, Schierholz, Wiese
Belavin, Polyakov, Schwartz, Tyupkin (1975), 't Hooft (1976) instanton liquid model
instanton-dyons (1998) invented by Kraan, van Baal, Lee, Lu nonzero electric and magnetic charges, sources of Abelian gluons instanton-dyon ensemble

Diakonov,Petrov,Shuryak,Schäfer V.G. Bornyakov, E.-M. Ilgenfritz, B.V. Martemyanov center vortex condensation: 't Hooft, Vinciarelli, Yoneya (1978), Cornwall, Nielsen, Olesen, Mack, Petkova (1979)
vortices detected by Center Projection $\quad \longrightarrow \quad$-vortices
how far do models lead to non-vanishing gluon and quärk condeñsate=?

Preference by action or "entropy"

monopoles: by entropy
instantons: by local minima of the action: $S_{\text {inst }}=\frac{8 \pi^{2}}{g^{2}}$
vortices: center symmetry and entropy

multiply all links in one time-slice with a center element

Vortex as surface of Dirac volume low action - high entropy

some Vortex properties

- form closed surfaces in dual space,
- vortices have a thick core,
- percolating in all directions
- deconfinement transition a de-percolation transition,
- in deconfinement: percolation in spatial directions only,
- scaling of the P -vortex density.

Shapes of projected vortices

3-dimensional cuts through dual lattices
zero temperature

12^{4}-lattice
vortices percolate
finite temperature above phase transition

2×12^{3}-lattice
constant in time \rightarrow cylinders
area law for spatial Wilson loops

Area law for center projected Wilson loops

Vortices are closed surfaces
only surface contribution to action

denote f the probability that a plaquette has the value -1

$$
\begin{array}{r}
\langle W(A)\rangle=[(-1) f+(+1)(1-f)]^{A}=\exp [\underbrace{\ln (1-2 f)}_{-\sigma} A]= \\
=\exp [-\sigma \overbrace{R \times T}^{A}], \quad \sigma \equiv-\ln (1-2 f) \approx 2 f
\end{array}
$$

Center vortex dominance

From: Höllwieser et al.:PhysRevD.78.054508.
Left: Creutz ratios for full, center-projected, and vortex-removed gauge fields for $\beta_{L W}=3.3$.

Right: Wilson loop pierced by n P-vortices W_{n}. Expect $W_{n} \rightarrow(-1)^{n} W_{0}$ as area is increased.
Cancellations lead to area-law of confinement.

Center vortex dominance

P-vortex surface density
vs. $\beta_{L W}$

From: Höllwieser et al.:PhysRevD.78.054508.
"Two-loop" line is scaling prediction with $\sqrt{\rho_{V} / 6 \Lambda^{2}}=50$.
Scaling shows the vortex density is a physical quantity, with a well defined continuum limit.

Monopoles and Vortices

\rightarrow Greensite et al. (1997)
Almost all monopole cubes are pierced by exactly one, P-vortex

No vortex

$$
93 \%
$$

1 vortex

>1 vortex

Monopole action is highly asymmetric:
Plaquette action
$S=\left(1-\frac{1}{2} \operatorname{Tr}\left[U_{\square}\right]\right)-S_{0}$
mainly oriented in P-vortex direction

W-bosons change the field distribution

Monopoles arranged in monopole-antimonopole chains $=$ Vortices
\rightarrow Ambjorm, Giedt, Greensite, 2000

Vortices are colorful

3D pictures

Colors are gauge dependent
In Abelian projection we use a color filter and find monopoles, Monopoles are an indication of the color structure

Monopoles as hint of color structure of vortices

Colorfull spherical vortex
\rightarrow Höllwieser et al. 2012

Colorful plain vortex

plain xy -vortex: for $t=1 \mathrm{t}$-links vary in z -direction bfrom 1 to $-\mathbf{1}$ in $\left|z-z_{v}\right| \leq d$

$$
\begin{aligned}
& U_{i}(x)=1 \\
& U_{4}(x)= \begin{cases}U_{4}^{\prime}(\vec{x}) & \text { for } t=1 \\
1 & \text { else }\end{cases} \\
& \text { where for }\left|z-z_{\mathrm{v}}\right| \leq d
\end{aligned} \begin{aligned}
& U_{4}^{\prime}(\vec{x})= \begin{cases}\mathrm{e}^{\mathrm{i} \alpha(z) \sigma_{n}}, & \rho \leq R \\
\mathrm{e}^{\mathrm{i} \alpha(z) \sigma_{3}} & \text { else }\end{cases} \\
& \sigma_{n}=\sigma_{1} \sin \theta(\rho) \cos \phi+ \\
& \sigma_{2} \sin \theta(\rho) \sin \phi+ \\
& \sigma_{3} \cos \theta(\rho)
\end{aligned}
$$

Vortices generate topological charge

Recall that the topological charge density is defined as

$$
q(x)=\frac{1}{16 \pi^{2}} \operatorname{Tr}\left(F_{\mu \nu} \tilde{F}_{\mu \nu}\right)=\frac{1}{4 \pi^{2}} \vec{E} \cdot \vec{B}, \quad \tilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} F_{\rho \sigma} .
$$

We need flux in all four directions.
A vortex has flux perpendicular to its world sheet.
Generate topological charge by:

- intersecting vortices,
- vortex "writhing," i.e., twisting around itself
- Color structure

P-vortices need an orientation
regions of different orientation are separated by monopole lines
\rightarrow Engelhardt, Reinhardt (2000)

Topological charge from intersections and writhing points

\rightarrow Bruckmann, Engelhardt (2003)
Intersections and writhing points contribute to the topological charge of a P-vortex surface

- intersections $Q= \pm \frac{1}{2}$
- writhing points $Q= \pm \frac{1}{8}$
H. Reinhardt, NPB628 (2002) 133 [hep-th/0112215], hep-th/0204194

Intersecting plane vortices

Intersecting two orthogonal pairs of plane vortices we can generate topology. A xy vortex generates a chromo-electric field, E_{z}, and a $z t$ vortex a chromo-magnetic field, B_{z}. Each intersection point contributes $Q= \pm 1 / 2$ to the total topological charge.

Antiparallel Vortices

So we can get $Q=2$ with parallel intersecting vortices and $Q=0$ with antiparallel intersecting vortices.

Continuum Form of colorful spherical vortex

after time-dependent gauge transformation $\Omega(\vec{r}, t)$ vortex \equiv vacuum - vacuum transition

$$
\left.\begin{array}{l}
t=1 \\
t=2
\end{array}\right\} \text { vacuum pure gauge }\left\{\begin{array}{l}
R^{3} \mapsto 1 \quad \text { no winding } \\
R^{3} \mapsto S^{3}
\end{array}\right. \text { winding }
$$

smoothing possible $\quad \rightarrow$ Schweigler, 2013 distribute to several time-slices $\Delta t \quad \Rightarrow \mathcal{A}_{\mu}=\mathrm{i} f(t) \partial_{\mu} g^{\dagger} g$

Colorful plain vortices

gauge transformation: rotate time-links to $U_{4}(x)=\mathbb{1}$ distribute transition over Δt time slices
topological charge during cooling for $R=d=7$ on $28^{3} \times 40$
$\Delta t=1$

$\Delta t=11$

Vortices and chiral symmetry breaking Atiyah-Singer index theorem

- zero-modes of fermionic matrix: $D[A] \psi(x)=0$
- ψ has definite chirality:

$$
\psi_{R}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi, \quad \Rightarrow \quad \gamma_{5} \psi_{R}= \pm \psi_{R}
$$

- Index theorem (wilson, overlap fermions):

$$
\begin{aligned}
& n_{-}, n_{+}: \text {number of left-/right-handed zeromodes } \\
& \qquad \operatorname{ind} D[A]=n_{-}-n_{+}=Q[A]
\end{aligned}
$$

- (Asqtad) staggered fermions:

$$
\text { ind } D[A]=2 Q[A](\mathrm{SU}(2) \text {, double degeneracy })
$$

- Adjoint overlap fermions:

$$
\text { ind } D[A]=2 N Q[A]=4 Q[A] \text { (real representation) }
$$

\rightarrow Neuberger, Fukaya (1999)

Banks-Casher relation

Chiral symmetry breaking

\Longrightarrow Low-lying eigenmodes of Dirac operator

Dirac equation: $D[A] \psi_{n}=\mathrm{i} \lambda_{n} \psi_{n}$,
$\left\{\gamma_{5}, \gamma_{\mu}\right\}=0, \quad D[A] \gamma_{5} \psi_{n}=-i \lambda_{n} \gamma_{5} \psi_{n}$
Non-zero eigenvalues appear in imaginary pairs $\pm \mathrm{i} \lambda_{n}$.

$$
\begin{aligned}
\langle\bar{\psi} \psi\rangle= & -\lim _{m \rightarrow 0} \lim _{V \rightarrow \infty}\left\langle\frac{1}{V} \sum_{n} \frac{1}{m+\mathrm{i} \lambda_{n}}\right\rangle= \\
= & -\lim _{m \rightarrow 0} \lim _{V \rightarrow \infty}\left\langle\frac{1}{V} \int \mathrm{~d} \lambda \rho_{V}(\lambda) \frac{1}{2}\left(\frac{1}{m+\mathrm{i} \lambda}+\frac{1}{m-\mathrm{i} \lambda}\right)\right\rangle \\
& -\lim _{m \rightarrow 0} \frac{m}{m^{2}+\lambda^{2}}=\lim _{m \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} \lambda} \arctan \frac{m}{\lambda} \longrightarrow \pi \delta(0)
\end{aligned}
$$

Chiral condensate \Longrightarrow Density of Near-Zero-modes

$$
\langle\bar{\psi} \psi\rangle=\frac{\pi \rho_{V}(0)}{V}
$$

Banks, Casher(1980)

Dirac spectra, spherical vortices and instantons

The overlap Dirac eigenvalues, and even the eigenmodes, in the background of spherical vortices are very similar to those with instantons.

With objects of opposite topological charge, the would-be zero modes interact and become near-zero modes.

changing distance between Vortex and Anti-vortex

Abelian or Center degrees of freedom

Double-winding Wilson loops
\rightarrow Greensite, Höllwieser, 2015

magnetic flux

Spherical symmetric monopole flux is spreading with $1 / A$ and may lead to small contributions to Wilson loops $W_{\mathcal{C}_{1}+\mathcal{C}_{2}}=\left\langle\exp \left\{\mathrm{i} \frac{\sigma_{3}}{2}\left(\alpha_{\mathcal{C}_{1}}+\alpha_{\mathcal{C}_{2}}\right)\right\}\right\rangle \approx \alpha_{a} \exp \left[-\sigma\left(A_{1}+A_{2}\right)-\mu P\right]$

Center vortex flux doesn't spread $W_{\mathcal{C}_{1}+\mathcal{C}_{2}}=\left\langle(-1)^{n_{\mathcal{C}_{1}}+n_{\mathcal{C}_{2}}}\right\rangle=\left\langle(-1)^{\left|n_{\mathcal{C}_{1}}-n_{\mathcal{C}_{2}}\right|}\right\rangle \approx \alpha_{c} \exp \left[-\sigma\left|A_{1}-A_{2}\right|\right]$

Double-winding Wilson loops

$$
\begin{gathered}
L=7 \\
A_{1}=8\left(L_{2}+1\right)-1, \quad A_{2}=L_{1} L_{2}
\end{gathered}
$$

Double-winding Wilson loops: Z(2)

Double-winding Wilson loops: MAG

Double-winding Wilson loops: SU(2)

Examine instanton content in $\mathrm{SU}(3)$ by cooling

recent results of Adelaide group: Trewartha, Kamleh, Leinweber

Cooling Sweeps

Examine instanton content in $\mathrm{SU}(3)$ by cooling

 Trewartha et al. (2015)Average absolut value of topological charge

Examine instanton content in $\mathrm{SU}(3)$ by cooling

Trewartha et al. (2015)
Average number of local action maxima

Examine instanton content in $\mathrm{SU}(3)$ by cooling

Trewartha et al. (2015)
Average radius ρ of instanton candidates

String tension in SU(3) by cooling

Trewartha et al. (2015)

Landau gauge quark propagator in $\mathrm{SU}(3)$ by cooling

Trewartha et al. (2015)
Lattice quark propagator $S(p)=\frac{Z(p)}{i q+M(p)}$ nonp-perturbative mass function $M(p)$

after 10 cooling sweeps

Examine instanton content in $\mathrm{SU}(3)$ by cooling

recent results of Adelaide group: Trewartha, Kamleh, Leinweber
same smoothing of $\left\{\begin{array}{l}\text { original configurations } \\ \text { vortex only configurations } \\ \text { vortex removed configurations }\end{array}\right.$

- Vortex removal spoils and destabilizes instantons
- Spoiled instantons are removed via cooling
- Under cooling vortex only configurations produce background of instanton-like objects
- gauge field smoothing can restore agreement between untouched and vortex only configurations
- consistency with instanton model of dynamical mass generation Support of hypothesis
Center vortices are the fundamental long-range structures underpinning chiral symmetry breaking

Vortex model explains

- non-trivial vacuum \rightarrow gluon condensate
- area law of Wilson loops
- Casimir scaling of heavy-quark potential
- double winding Wilson loops
- finite temperature phase transition \rightarrow Polyakov loops
- orders of phase transitions in $\operatorname{SU}(2)$ and $\operatorname{SU}(3)$
- area law for spatial Wilson loops
- topological charge
- chiral symmetry breaking \rightarrow quark condensate
- monopole picture of confinement
\rightarrow dual superconductor model
- color structure of vortices \rightarrow instantons

Methods of vortex detection, problems

Laplacian center gauge: absence of scaling of P-vortex density de Forcrand, D'Elia, Alexandrou and Langfeld, Reinhardt, Schäfke
Maximal center gauge $=$ adjoint Landau gauge

$$
R=\sum_{x} \sum_{\mu}\left|\operatorname{Tr}\left[U_{\mu}(x)\right]\right|^{2} \quad \rightarrow \quad \text { Maximum }
$$

+ center projection
Problems:

$$
U_{\mu}(x) \quad \rightarrow \quad Z_{\mu}(x) \equiv \operatorname{sign} \operatorname{Tr}\left[U_{\mu}(x)\right]
$$

- cooled or RG-smoothed configurations, Kovacs-Tomboulis: string tension is drastically reduced after only a few cooling steps, why: vortex cores expand considerably, every region of the lattice is part of a vortex core, fits fail badly near the middle of the vortex.
- Gribov ambiguity: local maxima versus global maxima, extensive simulated annealing: Bornyakov, Komarov, Polikarpov, Veselov \rightarrow loss of vortex finding property

The Gribov-copy problem

Figure: Wilson action on a 18^{4}-lattice, 458 configurations at $\beta=2.2$,

Center projection underestimates the string tension in cooled configurations.

Non-abelian Stokes law

there are no holes between center regions non-Abelian Stokes law \rightarrow Abelian Stokes law observables to identify these center regions?

Homogeneity of a 2×2-Wilson-Loop

$\boldsymbol{W}_{j}=\cos \left(\alpha_{j}\right) \boldsymbol{\sigma}_{0}+\mathrm{i} \sum_{k=1}^{3} \sin \left(\alpha_{j}\right)\left(\boldsymbol{n}_{j}\right)_{k} \boldsymbol{\sigma}_{k}$,
$\boldsymbol{n}_{j} \in \mathbb{S}^{2},\left|\boldsymbol{n}_{j}\right|=1$,
Definition: S2-homogeneity: $h_{S 2}:=\frac{1}{4}\left|\sum_{j=1}^{4} \boldsymbol{n}_{j}\right| \in[0,1]$.
Homogeneity of 2 to 4 plaquettes

S2-homogeneity of plaquette pairs

Wilson action:

Lüscher-Weisz action:

Manfried Faber
March 14, 2018

S2-homogeneity and trace of plaquette pairs

Wilson action with $\beta=2.2$:

Lüscher-Weisz action with $\beta=3.35$:

Conclusion

many successes of vortex model

- explains confinement
- explains phase transition
- explains topological charge
- explains chiral symmetry breaking
- explains success of abelian monopoles
still open problems to solve
- improve gauge fixing functional

Thank you for your attention! Questions?

