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Models of the QCD vacuum
Savvidy vacuum (1977): Infrared instability of the vacuum

dual superconductor picture: Nielsen and Olesen (1973), Nambu and
Creutz (1974), ’t Hooft, Parisi, Jevicki and Senjanovic (1975),
Mandelstam (1976)
magnetic monopoles detected by Abelian Projection:

Kronfeld, Laursen, Schierholz, Wiese

Belavin, Polyakov, Schwartz, Tyupkin (1975), ’t Hooft (1976)
instanton liquid model
instanton-dyons (1998) invented by Kraan, van Baal, Lee, Lu
nonzero electric and magnetic charges, sources of Abelian gluons
instanton-dyon ensemble Diakonov,Petrov,Shuryak,Schäfer
V.G. Bornyakov, E.-M. Ilgenfritz, B.V. Martemyanov

center vortex condensation: ’t Hooft, Vinciarelli, Yoneya (1978), Cornwall,
Nielsen, Olesen, Mack, Petkova (1979)

vortices detected by Center Projection −→ P-vortices

how far do models lead to non-vanishing gluon and quark condensate ?
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Preference by action or “entropy”

monopoles: by entropy
instantons: by local minima of the action: Sinst = 8π2

g2

vortices: center symmetry and entropy

t

x, y, z

multiply all links
in one time-slice
with a center element
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Vortex as surface of Dirac volume

low action - high entropy

Manfried Faber March 14, 2018 3 / 43



some Vortex properties

form closed surfaces in dual space,

vortices have a thick core,

percolating in all directions

deconfinement transition a de-percolation transition,

in deconfinement: percolation in spatial directions only,

scaling of the P-vortex density.
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Shapes of projected vortices

3-dimensional cuts through dual lattices

zero temperature

124-lattice

vortices percolate

finite temperature
above phase transition

2× 123-lattice

constant in time → cylinders

area law for spatial Wilson
loops
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Area law for center projected Wilson loops
Vortices are closed surfaces
only surface contribution to action

−1

−1

−1

−1−1

−1

−1

−1

−1
−1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

denote f the probability that a plaquette has the value -1

〈W (A)〉 = [(−1)f + (+1)(1− f )]A = exp[ln(1− 2f )︸ ︷︷ ︸
−σ

A] =

= exp[−σ
A︷ ︸︸ ︷

R × T ], σ ≡ − ln(1− 2f ) ≈ 2f
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Center vortex dominance
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fields for βLW = 3.3.

Right: Wilson loop pierced by n P-vortices Wn.
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Cancellations lead to area-law of confinement.
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Center vortex dominance
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“Two-loop” line is scaling prediction with
√
ρv/6Λ2 = 50.

Scaling shows the vortex density is a physical quantity, with a well defined
continuum limit.
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Monopoles and Vortices

Ü Greensite et al. (1997)

Almost all monopole cubes are pierced by exactly one, P-vortex

4 %

>1 vortex1 vortexNo vortex

3 % 93 %

Monopole action is highly asymmetric:

Plaquette action
S = (1− 1

2Tr[U�])− S0
mainly oriented in P-vortex direction

0.29

      
                                 

         
           

S   = 0.03

0.29

Manfried Faber March 14, 2018 9 / 43



W-bosons change the field distribution

Monopoles arranged in monopole–antimonopole chains = Vortices

Ü Ambjorm, Giedt, Greensite, 2000
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Vortices are colorful

3D pictures

Colors are gauge dependent
In Abelian projection we use a color filter and find monopoles,
Monopoles are an indication of the color structure
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Monopoles as hint of color structure of vortices
Colorfull spherical vortex Ü Höllwieser et al. 2012

Uµ(x) =

{
exp {iα(r) ~er · ~σ} t = 1, µ = 4

1 elsewhere

α(r)
π

0

α− d α+

R

r

P-vortex Abelian projection
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Colorful plain vortex

plain xy-vortex: for t = 1 t-links vary in z-direction
bfrom 1 to −1 in |z − zv | ≤ d

Ui (x) = 1

U4(x) =

{
U ′4(~x) for t = 1

1 else

where for |z − zv | ≤ d

U ′4(~x) =

{
eiα(z)σn , ρ ≤ R

eiα(z)σ3 else

σn = σ1 sin θ(ρ) cosφ +
σ2 sin θ(ρ) sinφ +
σ3 cos θ(ρ)
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Vortices generate topological charge
Recall that the topological charge density is defined as

q(x) =
1

16π2
Tr
(
Fµν F̃µν

)
=

1

4π2
~E · ~B , F̃µν =

1

2
εµνρσFρσ .

We need flux in all four directions.
A vortex has flux perpendicular to its world sheet.

Generate topological charge by:

intersecting vortices,

vortex “writhing,” i.e., twisting around itself

Color structure

P-vortices need an orientation
regions of different orientation are separated by monopole lines

Ü Engelhardt, Reinhardt (2000)
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Topological charge from intersections and writhing
points

Ü Bruckmann, Engelhardt (2003)

Intersections and writhing points contribute to the topological charge of a
P-vortex surface

intersections Q = ±1
2

writhing points Q = ±1
8

H. Reinhardt, NPB628 (2002) 133 [hep-th/0112215], hep-th/0204194
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Intersecting plane vortices

Intersecting two orthogonal pairs of plane vortices we can generate
topology. A xy vortex generates a chromo-electric field, Ez , and a zt
vortex a chromo-magnetic field, Bz . Each intersection point contributes
Q = ±1/2 to the total topological charge.

Parallel Vortices Geometry Antiparallel Vortices

x

z

0
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x

0

x

y

z

x

z

-Q

0

+Q

x

-

0

So we can get Q = 2 with parallel intersecting vortices and Q = 0 with
antiparallel intersecting vortices.
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Continuum Form of colorful spherical vortex

after time-dependent gauge transformation Ω(~r , t)

vortex ≡ vacuum - vacuum transition

t = 1
t = 2

}
vacuum

pure gauge

{
R3 7→ 1 no winding
R3 7→ S3 winding

smoothing possible Ü Schweigler, 2013
distribute to several time-slices ∆t ⇒ Aµ = if (t)∂µg
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Colorful plain vortices

gauge transformation:
rotate time-links to U4(x) = 1

distribute transition over ∆t time slices

topological charge during cooling for R = d = 7 on 283 × 40
∆t = 1 ∆t = 11
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Vortices and chiral symmetry breaking
Atiyah-Singer index theorem

zero-modes of fermionic matrix: D[A]ψ(x) = 0

ψ has definite chirality:

ψR
L

=
1

2
(1± γ5)ψ, ⇒ γ5ψR

L
= ±ψR

L

Index theorem (wilson, overlap fermions):

n−, n+: number of left-/right-handed zeromodes

indD[A] = n− − n+ = Q[A]

(Asqtad) staggered fermions:

ind D[A] = 2Q[A] (SU(2), double degeneracy)

Adjoint overlap fermions:

ind D[A] = 2NQ[A] = 4Q[A] (real representation)

Ü Neuberger, Fukaya (1999)
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Banks-Casher relation
Chiral symmetry breaking =⇒

=⇒ Low-lying eigenmodes of Dirac operator

Dirac equation: D[A]ψn = iλnψn,
{γ5, γµ} = 0, D[A] γ5ψn = −iλnγ5ψn

Non-zero eigenvalues appear in imaginary pairs ±iλn.

〈ψ̄ψ〉 = − lim
m→0

lim
V→∞

〈
1

V

∑
n

1

m + iλn

〉
=

= − lim
m→0

lim
V→∞

〈
1

V

∫
dλ ρV (λ)

1

2

(
1

m + iλ
+

1

m − iλ

)〉

− lim
m→0

m

m2 + λ2
= lim

m→0

d

dλ
arctan

m

λ
−→ πδ(0)

Chiral condensate =⇒ Density of Near-Zero-modes

〈ψ̄ψ〉 =
πρV (0)

V
Banks,Casher(1980)
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Dirac spectra, spherical vortices and instantons
The overlap Dirac eigenvalues, and even the eigenmodes, in the
background of spherical vortices are very similar to those with instantons.
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With objects of opposite topological charge, the would-be zero modes
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changing distance between Vortex and Anti-vortex
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Abelian or Center degrees of freedom
Double-winding Wilson loops

Ü Greensite, Höllwieser, 2015

magnetic flux

C1

C2

C1
C2

Spherical symmetric monopole flux is spreading with 1/A
and may lead to small contributions to Wilson loops
WC1+C2 = 〈exp{iσ32 (αC1 + αC2)}〉 ≈ αa exp[−σ(A1 + A2)− µP]

Center vortex flux doesn’t spread
WC1+C2 = 〈(−1)nC1+nC2 〉 = 〈(−1)|nC1−nC2 |〉 ≈ αc exp[−σ|A1 − A2|]
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Double-winding Wilson loops

dL=1

  L=7

L1

L2

A1 = 8(L2 + 1)− 1, A2 = L1L2
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Double-winding Wilson loops: Z(2)
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Double-winding Wilson loops: MAG
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Double-winding Wilson loops: SU(2)
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Examine instanton content in SU(3) by cooling

recent results of Adelaide group: Trewartha, Kamleh, Leinweber

average action
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Examine instanton content in SU(3) by cooling
Trewartha et al. (2015)
Average absolut value of topological charge
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Examine instanton content in SU(3) by cooling
Trewartha et al. (2015)
Average number of local action maxima
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Examine instanton content in SU(3) by cooling
Trewartha et al. (2015)
Average radius ρ of instanton candidates
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String tension in SU(3) by cooling

Trewartha et al. (2015)
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Landau gauge quark propagator in SU(3) by cooling

Trewartha et al. (2015)

Lattice quark propagator S(p) = Z(p)
iq/ +M(p)

nonp-perturbative mass function M(p)
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Examine instanton content in SU(3) by cooling

recent results of Adelaide group: Trewartha, Kamleh, Leinweber

same smoothing of


original configurations

vortex only configurations

vortex removed configurations

Vortex removal spoils and destabilizes instantons

Spoiled instantons are removed via cooling

Under cooling vortex only configurations produce background of
instanton-like objects

gauge field smoothing can restore agreement between untouched and
vortex only configurations

consistency with instanton model of dynamical mass generation

Support of hypothesis
Center vortices are the fundamental long-range structures underpinning
chiral symmetry breaking
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Vortex model explains

non-trivial vacuum → gluon condensate

area law of Wilson loops

Casimir scaling of heavy-quark potential

double winding Wilson loops

finite temperature phase transition → Polyakov loops

orders of phase transitions in SU(2) and SU(3)

area law for spatial Wilson loops

topological charge

chiral symmetry breaking → quark condensate

monopole picture of confinement
→ dual superconductor model

color structure of vortices → instantons
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Methods of vortex detection, problems
Laplacian center gauge: absence of scaling of P-vortex density

de Forcrand, D’Elia, Alexandrou and Langfeld, Reinhardt, Schäfke

Maximal center gauge = adjoint Landau gauge

R =
∑
x

∑
µ

|Tr[Uµ(x)]|2 → Maximum

+ center projection

Uµ(x) → Zµ(x) ≡ sign Tr[Uµ(x)]
Problems:

cooled or RG-smoothed configurations, Kovacs-Tomboulis:
string tension is drastically reduced after only a few cooling steps,
why: vortex cores expand considerably,

every region of the lattice is part of a vortex core,
fits fail badly near the middle of the vortex.

Gribov ambiguity: local maxima versus global maxima,
extensive simulated annealing: Bornyakov, Komarov, Polikarpov,
Veselov → loss of vortex finding property
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The Gribov-copy problem

Figure: Wilson action on a 184-lattice, 458 configurations at β = 2.2,

Center projection underestimates the string tension in cooled
configurations.
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Non-abelian Stokes law
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there are no holes between center regions
non-Abelian Stokes law → Abelian Stokes law

observables to identify these center regions?
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Homogeneity of a 2× 2-Wilson-Loop

Wj = cos(αj) σ0 + i
∑3

k=1 sin(αj) (nj)k σk ,

nj ∈ S2, | nj |= 1,

Definition: S2-homogeneity: hS2 := 1
4 |
∑4

j=1 nj | ∈ [0, 1].

Homogeneity of 2 to 4 plaquettes
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S2-homogeneity of plaquette pairs

Wilson action:

Lüscher-Weisz action:
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S2-homogeneity and trace of plaquette pairs

Wilson action with β = 2.2 :

Lüscher-Weisz action with β = 3.35 :
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Conclusion

many successes of vortex model

explains confinement

explains phase transition

explains topological charge

explains chiral symmetry breaking

explains success of abelian monopoles

still open problems to solve

improve gauge fixing functional
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Thank you for your attention!

Questions?
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