speaker: G. Yu. Prokhorov^{1,2} D. A. Shohonov¹ O.V. Teryaev^{1,2} N. S. Tsegelnik¹ V.I. Zakharov^{2,1}

¹ Joint Institute for Nuclear Research (JINR), BLTP, Dubna

²NRC Kurchatov Institute, Moscow

> **Seminar,** VBLHEP, JINR, Dubna, March 14, 2025

based on works: arXiv: 2304.13151 (2024) arXiv: 2502.10146 (2025)

Novel Quantum Phase Transition in Accelerated Relativistic Fluid

Contents

Part 1. Introduction and Motivation

Part 2. **Theory**

Part 3. Modeling

Part 4. Conclusion and Outlook

Part 1

Introduction and Motivation

Phase transitions

• Phase transitions are a universal phenomenon that play a central role in physics (e.g. the modern **Universe** arose as a result of a series of phase transitions)

grand unification? electroweak phase transition $SU(5) \rightarrow SU(3) \times SU(2) \times U(1) \rightarrow SU(3) \times U(1)$

 The search for a phase transition (or crossover) in **quantum chromodynamics** is one of the main tasks of fundamental high-energy physics

Examples: water-ice-vapor, QCD...

UW-Madison Chemistry 103/104 Resource Book

The Hot QCD White Paper (2015)

Hydrodynamics in heavy ion collisions

- In the early stages of heavy ion collisions, the system exhibits **hydrodynamic** properties.
- There are indications that the QGP is a fluid with almost **minimal viscosity** close to the famous KSS-bound predicted from black hole physics.

[Kovtun, Son, Starinets, PRL, 2005, arXiv:hep-th/0405231]

(forthcoming seminar of our group in BLTP, next week 19.03.2025)

https://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/

Hydrodynamics in heavy ion collisions

- New area: vortical relativistic fluids in external fields
- Off-center collisions of heavy ions produce **huge magnetic fields** and **enormous angular momentum**.

Rotation is 25 orders of magnitude faster than the rotation of the Earth:
the vorticity of order 10²² sec⁻¹

Annual since 2015: *"International Conference on Chirality, Vorticity, and Magnetic Field in Quantum Matter"*

(Romania 2024, Brazil 2025)

Hydrodynamics in heavy ion collisions

- Plenty results on **vorticity** and **magnetic field** effects:
 - -- quantum anomaly transport effects:

chiral magnetic effect (CME),
chiral vortical effect (CVE),
kinematical vortical effect (KVE),
many other effects...

[Fukushima, Kharzeev, Warringa, PRD (2008), e-Print: 0808.3382]

[Son, Surowka, PRL (2009), e-Print: 0906.5044]

[Prokhorov, Teryaev, Zakharov, PRL (2022), e-Print: 2207.04449]

- vortical polarization [STAR, Nature (2017), arXiv: 1701.06657]
 rotation on the lattice [Braguta, Kotov, Kuznedelev, Roenko, PRC (2021), e-Print: 2102.05084]
- Modern development: **acceleration** effects

Vorticity	\leftrightarrow	Magnetic field
Acceleration	\leftrightarrow	Electric field

It is natural to consider **acceleration** effects in addition to **vorticity**.

Phase diagrams: extra dimensions

• The question of the influence of **magnetic field** and **rotation** on the phase diagram of QCD is currently being actively studied in models and on the lattice:

https://indico.math.cnrs.fr/event/10773/contributions/ 11970/attachments/5157/8420/fukushima.pdf

• <u>The question of the influence of **acceleration** on the **phase transition** is even less clear.</u>

[Chernodub, 2025, e-Print: 2501.16129] and references therein

Hawking and Unruh effects

The essence of the Hawking effect

If one of the particles goes beyond the black hole horizon, the other particle becomes real \rightarrow thermal Hawking radiation

$$ds^{2} = \left(1 - \frac{r_{g}}{r}\right)c^{2}dt^{2} - r^{2}(\sin^{2}\theta d\varphi^{2} + d\theta^{2}) - \frac{dr^{2}}{1 - r_{g}/r}$$

Hawking radiation is a consequence of the existence of an **event horizon**.

A thermal spectrum with the **Hawking temperature** is formed:

$$T_H = \frac{1}{8\pi \, G \, M}$$

Hawking and Unruh effects

Equivalence principle – we expect a similar effect in flat space in an accelerated frame. This is true: the **Unruh effect**.

[W. G. Unruh, Phys. Rev. D 14, 870 (1976)]

In an **accelerated** frame of reference, there is also an event **horizon**.

[Eur.Phys.J. C52 (2007) 187-201]

Formulation

The Minkowski **vacuum** is perceived by an **accelerated** observer as a medium with a finite (Unruh) **temperature**

$$T_U = \frac{a}{2\pi}$$

Toy-like derivation

$$g = GM/R^2 = (R_{black \, hole} = 2GM) = 1/4GM$$

$$T_H = 1/8\pi GM = g/2\pi$$

Equivalence principle: $g \leftrightarrow a$

$$T_H \rightarrow T_U = \frac{a}{2\pi}$$

Hawking and Unruh effects

Prof. Unruh moving with acceleration feels the temperature

$$T_U = \frac{a}{2\pi}$$

A stationary observer has a temperature

T = 0

[Blasone, (2018), e-Print: 1911.06002]

Summary of part 1: open questions

- **Unruh effect** in heavy ion **collisions**?
 - -- <u>The Unruh effect from a **statistical** mechanics point of view?</u>

Analogy:

Huge electric fields are predicted in HIC. They may lead to a (somewhat Unruh-like) Schwinger effect in HIC.

[Toneev, Rogachevsky, Voronyuk, Eur.Phys.J.A 52, 264 (2016)] [Taya, Nishimura, Ohnishi, PRC 110, 014901 (2024)]

• Critical phenomena related to acceleration?

[Prokhorov, Teryaev, Zakharov, JHEP (2020), e-Print: 1911.04545] [Prokhorov, Teryaev, Zakharov, 2304.13151 (2024)]

 $u_{\mu}(x)$

T(x)

 $\beta_{\mu} = u_{\mu}/T$

Consider relativistic fluid of particles with spin 1/2:

Quantities

4-velocity of the fluid

Proper temperature

Inverse temperature vector

Thermal vorticity tensor (analogous to the acceleration tensor) $\varpi_{\mu\nu} = -\frac{1}{2}(\nabla_{\mu}\beta_{\nu} - \nabla_{\nu}\beta_{\mu})$

$$\varpi_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta} w^{\alpha} u^{\beta} + \alpha_{\mu} u_{\nu} - \alpha_{\nu} u_{\mu}$$

$$\alpha_{\mu} = a_{\mu}/T$$
 acceleration

We consider a medium in a state of **(global) thermodinamic equilibrium**

[F. Becattini, L. Bucciantini, E. Grossi, L. Tinti, Eur. Phys. J. C 75, 191 (2015)]

Killing equation

$$\nabla_{\mu}\beta_{\nu} + \nabla_{\nu}\beta_{\mu} = 0$$

Very close to the Tolman-Ehrenfest's criterion and the Luttinger relation

The density operator contains the effects of **thermal vorticity**

$$\hat{\rho} = \frac{1}{Z} \exp\left\{-\beta_{\mu}(x)\hat{P}^{\mu} + \frac{1}{2}\varpi_{\mu\nu}\hat{J}_{x}^{\mu\nu} + \xi\hat{Q}\right\}$$

The **angular momentum** describes the effects of **vorticity**, while the **boost** generator describes the effects of **acceleration**.

$$\varpi_{\mu\nu}\hat{J}^{\mu\nu} = -2\alpha^{\rho}\hat{K}_{\rho} - 2w^{\rho}\hat{J}_{\rho}$$

The density operator can be used to find the **mean value** of the operator in a medium with a *thermal vorticity*

$$\langle \hat{O}(x) \rangle = \operatorname{tr}\{\hat{\rho}\hat{O}(x)\}_{\operatorname{ren}}$$

The effects of **thermal vorticity** can be calculated in the framework of the **perturbation theory** (a feature is the presence of *non-commuting* operators)

$$\langle \hat{O}(x) \rangle = \langle \hat{O}(0) \rangle_{\beta(x)} + \sum_{N=1}^{\infty} \frac{\varpi^N}{2^N |\beta|^N N!} \int_0^{|\beta|} d\tau_1 d\tau_2 \dots d\tau_N \langle T_\tau \hat{J}_{-i\tau_1 u} \dots \hat{J}_{-i\tau_N u} \hat{O}(0) \rangle_{\beta(x),c}$$

The meaning of the Unruh effect is that the accelerated observer sees the **Minkowski vacuum** as a medium filled with particles with a **Unruh temperature** proportional to the acceleration

$$T_U = \frac{a}{2\pi}$$

Thus, the **mean values** of the thermodynamic quantities normalized to Minkowski vacuum should be **equal to zero** when the proper temperature, measured by comoving observer, equals to the **Unruh temperature**.

• It has been shown for scalar particles.

[F. Becattini, Phys. Rev. D 97, no. 8, 085013 (2018)]

For **fermions**, a similar effect was observed based on the Wigner function in the Boltzmann limit at a **double** Unruh temperature $2T_U$

[W. Florkowski, E. Speranza and F. Becattini, Acta Phys. Polon. B 49, 1409 (2018)]

• This is due to the **approximate** nature of the Wigner function used.

Similarly for the other components of the energy-momentum tensor

$$\langle \hat{T}^{\mu\nu} \rangle_{\text{fermi}}^{0} = \left(\frac{7\pi^{2}T^{4}}{60} + \frac{T^{2}|a|^{2}}{24} - \frac{17|a|^{4}}{960\pi^{2}} \right) u^{\mu} u^{\nu} - \left(\frac{7\pi^{2}T^{4}}{180} + \frac{T^{2}|a|^{2}}{72} - \frac{17|a|^{4}}{2880\pi^{2}} \right) \Delta^{\mu\nu}$$

The energy-momentum tensor **vanishes** at the **Unruh temperature**

$$\langle \hat{T}^{\mu\nu} \rangle = 0 \qquad (T = T_U)$$

Thus, a consequence of the **Unruh effect** for Dirac fields is **justified**.

Minimal temperature?

- It is assumed that T_U is minimal, since the energy becomes negative below T_U [*F. Becattini, Phys. Rev., D97(8):085013, 2018.*]
- We know that in heavy ion collisions there is a problem of fast thermalization [D. Kharzeev, K. Tuchin. Phys. A, 753:316–334, 2005.]

Presumably there are states with $T < T_U$

Negative energies exist in physics (for example, in the ergosphere of rotating black holes).

Goal: construct an analytical continuation to the region $T < T_U$

• We will show that for massless fields with spin 1/2 it is impossible to use the old formulas \rightarrow a phase transition occurs

First signs:

• Instability at the Unruh temperature in the axial current of fermions (thermodynamic approach):

[Prokhorov, G., Teryaev, O., & Zakharov, V. (2018). Phys. Rev. D, 98(7), 071901]

 Similar instability in energy density (thermodynamic approach): [Prokhorov, G. Y., Teryaev, O. V., & Zakharov, V. I. (2019). Phys. Rev. D, 100(12), 125009]

Similar observations:

- Imaginary mass in scalar theory with interaction below the Unruh temperature:
 [Diakonov, D. V., & Bazarov, K. V. (2023), 2301.07478]
- Different formulas for the free energy of massive scalar fields above and below the Unruh temperature:

[Akhmedov, E. T., & Diakonov, D. V. (2022). Phys. Rev. D, 105(10), 105003]

• "Critical" points with "imaginary" rotation:

[Chernodub, M. N. (2022), 2210.05651]

• Problems with the limit $T \rightarrow T_U$ for higher spins (3/2, 2) in Schwinger-DeWitt coefficients: [D. V. Fursaev, G. Miele. Nucl. Phys. B, 484:697–723, 1997]

$$ds^2 = -\rho^2 d\theta^2 + dx^2 + dy^2 + d\rho^2$$

Passing to imaginary time: $ds^2 = \left[\rho^2 d\theta^2 + d\rho^2\right] + d\mathbf{x}_{\perp}^2$ $\mathcal{M} = \mathbb{R}^2 \otimes \mathcal{C}_{\nu}^2$ It describes a flat two-dimensional cone with an angular deficit $2\pi - a/T$. This metric contains a **conical singularity** at $\rho = 0$ T^{-1}

Dictionary for translation *Thermodynamic* characteristics in *Geometrical*:

Inverse proper **temperature** \iff **circumference**.

Inverse **acceleration**

stics in *Geometrical*: distance from the vertex. $e \iff circumference$.

Cosmic string metric is *equivalent* to the **Euclidean Rindler** metric up to a coordinate re-designation (J. S. Dowker, Class. Quant. Grav. 11, L55 (1994))

	Euclidean Rindler metric	Cosmic string
Form of metric	$ds^2 = \rho^2 d\theta^2 + d\rho^2 + d\mathbf{x}_\perp^2$	$ds^{2} = -dt^{2} + dz^{2} + \rho^{2}d\theta^{2} + d\rho^{2}$
Angular deficit	$2\pi - a/T$	$2\pi - 2\pi/\nu$
The component of the energy-momentum tensor corresponding to the periodic coordinate	T_0^0	T_2^2

translation from cosmic strings to Euclidean Rindler spacetime

$$\rho_{Rindler} = \langle T_2^2 \rangle_{string}$$
 , $\nu = 2\pi T/a$

- The region $T < T_U$ corresponds to a cone with an angle **greater than 360 degrees**.
- Odd number of full rotations of 360 degrees: $T_k = T_U/(2k+1)$

- When geometry changes from cone to plane, lowest Matsubara modes become singular on the horizon and change solution. This leads to peaks in the behavior of the modes.
- The situation repeats for other pairs of higher Matsubara modes at the points

$$T_k = T_U/(2k+1)$$

Thus, we found the same critical points as in the (approximate) statistical approach:

[Prokhorov, G., Teryaev, O., & Zakharov, V. (2018). Phys. Rev. D, 98(7), 071901]

Critical points: $T = T_U/(2k+1) \rightleftharpoons \nu = 1/(2k+1)$ k = 0, 1, 2...

Such mode jumping behaviour will lead to **new Green's functions** and **change** the quantum **mean values**.

Fundamental reason:

finiteness of the speed of light

(leads to non-compactness of the Poincaré group \rightarrow non-unitarity of representations \rightarrow anti-Hermitianity of the boost generator)

- But **different** mean values below and above $T_k = T_U/(2k+1)$
- Let us consider the **first critical point**:

 $T > T_U$

 $\frac{|a|}{6\pi} < T < \frac{|a|}{2\pi}$

$$\begin{split} \langle \hat{T}^{\mu\nu} \rangle &= \left(\frac{7\pi^2 T^4}{60} + \frac{T^2 |a|^2}{24} - \frac{17|a|^4}{960\pi^2} \right) u^{\mu} u^{\nu} \\ &- \left(\frac{7\pi^2 T^4}{180} + \frac{T^2 |a|^2}{72} - \frac{17|a|^4}{2880\pi^2} \right) \Delta^{\mu\nu} \end{split}$$

We confirm instabilties at the points:

$$T_k = T_U/(2k+1)$$

phase diagram

• **Second order** phase transition:

$$\frac{\partial \varepsilon}{\partial T}\Big|_{T \to T_U + 0} = \frac{4\pi T_U^3}{5}, \qquad \frac{\partial \varepsilon}{\partial T}\Big|_{T \to T_U - 0} = \frac{24\pi T_U^3}{5}$$
$$T > T_U \qquad \langle \hat{T}_\beta^\beta \rangle = 0$$
$$T < T \qquad \langle \hat{T}_\beta^\beta \rangle = 0$$

$$T < T_U \qquad \langle \hat{T}_{\beta}^{\beta} \rangle = \frac{\nu(\nu^2 - 1)}{4\pi^2 \rho^4} = 2\pi T |a| \left(T^2 - \frac{|a|^2}{4\pi^2} \right)$$

- Trace as an **order parameter**?
- The change in energy is associated with a change in the energy of the two lowest modes: $T^{2|a|^2}$

$$\Delta \varepsilon = \Delta \varepsilon_{(n=0, s_1=1)} + \Delta \varepsilon_{(n=-1, s_1=-1)} = 2\pi^2 T^4 - \frac{T^2 |a|^2}{2}$$

Cosmic strings: duality

• Since the metric of the cosmic string has the same form, then similar instabilities appear for the **cosmic string** too:

$$G^{E}(x; x'|N_{0})_{string} = G^{E}(x; x'|N_{0})_{Rindler}\Big|_{\mathbf{x}\to\tau, \mathbf{y}\to\mathbf{z}, \Sigma_{0}\to\Sigma_{3}}$$

cosmic string density becomes negative if we go into the hypothetical region

$$T < T_U \longrightarrow \mu^* = \frac{\nu - 1}{4\nu} < 0$$

• Finally we obtain:

$$\begin{split} \nu > 1: \quad \langle T^{\alpha}_{\beta} \rangle &= \frac{17 - 10\nu^2 - 7\nu^4}{2880\pi^2\rho^4} \text{diag}\left(1, 1, -3, 1\right) \,, \\ \frac{1}{3} < \nu < 1: \quad \langle T^{\alpha}_{\beta} \rangle &= \frac{17 + 110\nu^2 - 127\nu^4}{2880\pi^2\rho^4} \text{diag}\left(1, 1, -3, 1\right) + \frac{\nu(\nu^2 - 1)}{8\pi^2\rho^4} \text{diag}\left(1, 0, 0, 1\right) \,. \end{split}$$

Quantum phase transition

Has the features of both **thermal** and **quantum** phase transition. [Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011]

- On the one hand, it occurs at the finite temperature, which makes it similar to the classical thermal transition.
- On the other hand, the critical temperature, having the Planck scale, is extremely small

$$t_{a} = c/|a|$$

$$t_{r} = \xi \frac{\hbar}{k_{B}T} \iff T_{U} = \frac{\hbar|a|}{2\pi k_{B}c}$$

$$\xi = 1/2\pi$$

Inside black hole?

- Do states below the Unruh (Hawking) temperature relate (can be realized or related in some way) to the **interior of a black hole**?
- Simple arguments in favor this:

 $T < T_U \implies \varepsilon < 0$

Inside the ergosphere the energy is negative [*R. Penrose and R. M. Floyd. Nature*, 229:177–179, 1971]

Superradiance: extraction of energy from the black hole

Phys. 906 (2015) pp.1-237]

Negative modes inside a black hole (as a source of instability of the classical manifold)

[G. L. Pimentel, A. M. Polyakov, and G. M. Tarnopolsk, Rev. Math. Phys. 30, no. 07, 1840013 (2018)]

$$S_{\rm eff}(v) = mT\sqrt{1-V^2} + \dots$$

Inside black hole?

• Previously, it was hypothesized that the Unruh temperature is the minimal one

[F. Becattini. Phys. Rev., D97(8):085013, 2018.]

Possible explanation:

Minkowski vacuum is a stable and therefore lower energy state.

[Jin Jia and Pin Yu. Remark on the nonlinear stability of Minkowski spacetime: a rigidity theorem. 4 2023]

Then if we normalize to the Minkowski vacuum

 $T^{\alpha}_{\beta}(\text{Minkowski vacuum}) = 0 \longrightarrow \text{Energy cannot be negative}$

According to the Unruh effect Minkowski vacuum corresponds to Unruh temperature, so in any accelerated frame choice of $T_M = |a_M|/(2\pi)$ leads to zero energy

(selecting a specific acceleration value (or temperature) ~ "selecting gauge")

e.g.
$$\epsilon_{s=1/2} \equiv \langle \hat{T}_0^0 \rangle = \left(\frac{7\pi^2 T^4}{60} + \frac{|a|^2 T^2}{24} - \frac{17|a|^4}{960\pi^2} \right) \quad (T \ge T_U)$$

Since at $T < T_U$ the energy is negative \rightarrow the existence of such states would contradict the stability of the Minkowski vacuum?

Inside black hole?

• Thus, the states below $T < T_U$ seems to lead to the instability of the Minkowski vacuum

Possible way out: states $T < T_U$ refer to the region beyond the horizon (inside the black hole).

Predictions for Phenomenology

• The mechanism of thermalization with the Unruh effect

[P. Castorina, D. Kharzeev, H. Satz, Eur.Phys.J. C 52 (2007) 187-201]

• A quark pair is born in an accelerated state due to string tension: Unruh effect "thermalizes" hadronic spectra

Not everything is clear with this scenario:

-- due to the Unruh effect, particles are born in an accelerated frame of reference, and hadronization is observed in the laboratory, how can this be?

Predictions for Phenomenology

Alternative qualitative description of **thermalisation in HIC**:

- -- first the nuclei collide large acceleration due to stopping forces
- -- Thermalization had not yet occurred at the very beginning

It should be expected that at the **initial** moments **after** the **collision**:

$$T < T_U$$

Confirmed by direct collision simulation!
Part 3

-- if earlier the state $T < T_U$ was "hidden" inside the black hole, now it is hidden by confinement (a region in Hilbert space)?

Predictions for Phenomenology

If there is a **process of type**

(black hole + matter with $T < T_U$) \rightarrow (Minkowskian vacuum) + (thermal matter)

Then in this case it leads to the appearance of a **thermal hadron spectrum** with the **Unruh temperature** (which is of the order of QCD scale), which is what is needed for phenomenology

[T. Morita, Phys. Rev. Lett. 122, 101603 (2019)]

-- thermalization occurs as a sub-barrier transition - an explanation for the **fast thermalization**?

-- is the **phase transition at the Unruh temperature** closely related to the **QCD transition**? Alternative scenario of hadronisation.

Summary of part 2

1. Quantum corrections to the energy-momentum tensor were calculated in the statistical approach (in ordinary Minkowski space) - **justification** of the **Unruh effect** in **statistics**.

2. Analytical continuation to the temperature region below the Unruh temperature shows the existence of a **phase transition at the Unruh temperature** associated with the behavior of fields **on the horizon**.

- 3. The process is similar to **falling** into a **black hole**.
- 4. A **thermalization scenario** based on this phase transition is proposed:
 - -- assumes the existence of states $T < T_U$ with a temperature below the Unruh temperature at the **early stages** of HICs.
 - -- Hadronization and phase transition occur near the Unruh temperature.

[Prokhorov, <u>Shohonov</u>, Teryaev, <u>Tsegelnik</u>, Zakharov, (2025) arXiv: 2502.10146]

Questions about the model: *tsegelnik@jinr.ru*

Statement of the problem and methods

Problems and motivation for modeling:

- The results obtained motivate acceleration modeling in HICs. Little studied, see however:
 [Karpenko, Becattini, Nucl.Phys.A (2019), arXiv:1811.00322]
- Check that extreme accelerations are generated.
- Verify the existence of "exotic" states with $T \, < \, T_U$
- But we will obtain a **little more**.

What we do:

- The collision of two gold nuclei Au-Au at energies $\sqrt{s_{NN}} = 4.5 11.5 \text{ GeV}$ central and off-center b = 7.5 fm are considered.
- The parton-hadron-string dynamics (PHSD) model is used: [Cassing, Bratkovskaya, Nucl.Phys.A (2009)]
- The space distributions of acceleration and temperature and their time evolution will be obtained.

Acceleration from PHSD:

$$T^{\mu\nu}(x) = \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}p^{\nu}}{p^0} f(x,p) \quad \Longrightarrow \quad u_{\mu}T^{\mu\nu} = \varepsilon u^{\nu} \quad \Longrightarrow \quad a_{\mu} = u^{\nu}\partial_{\nu}u_{\mu}$$

Results: central Au-Au collisions

Temperature and acceleration at different time moments for the slice z=0

Results: central Au-Au collisions

- The distribution of acceleration and temperature has a **core-corona structure**:
 - -- The **core** has **high temperature** and **low acceleration**.
 - -- The **corona** has **low temperature** and **high acceleration**.
- The acceleration is maximum at the **initial time moments** and has the order of: $a \sim 1 \, GeV \sim 10^{32} \, m/sec^2$
 - -- acceleration is **extremely large in nature**!

[Вергелес,Николаев, Обухов, Силенко, Теряев, УФН 2023, e-Print: 2204.00427]

• Over time, acceleration decreases.

Results: off-center Au-Au collisions

Temperature and acceleration at different time moments for the slice z=0

Results: $T^2 - T_U^2$, central collisions

Different slices along the z-axis, initial time moments t = 0.5 fm/c and t = 1 fm/c

- At first there is no system for large z.
- In the center (in the core) $T>T_U$
- On the periphery (in the corona) $T < T_U$

The existence of states $T < T_U$ is confirmed!

Results: $T^2 - T_U^2$, central collisions

Different slices along the z-axis, time moments t = 2fm/c and t = 3fm/c

- The system continues to expand.
- The area where $T < T_U$ is reduced.

Results: $T^2 - T_U^2$, central collisions

Different slices along the z-axis, time moments t = 4fm/c and t = 5fm/c

Results: $T^2 - T_U^2$, off-center collisions

Different slices along the z-axis, initial time moments t = 0.5 fm/c and t = 1 fm/c

• The situation is similar to central collisions, but the system is not symmetrical.

Results: $T^2 - T_U^2$, off-center collisions

Different slices along the z-axis, time moments t = 2fm/c and t = 3fm/c

Results: $T^2 - T_U^2$, off-center collisions

Different slices along the z-axis, time moments t = 4fm/c

t = 4fm/c and t = 5fm/c

Results: QGP and hadronic phases

Average temperature and acceleration: 1) total, 2) hadronic phase, 3) QGP. Different collision energies, central and off-center.

- At first the acceleration is much greater than the temperature, then quickly falls.
- Hadronic phase: $T < T_U$
- **QGP phase:** $T > T_U$
- At higher energies, the initial acceleration is higher.

Results: QGP and hadronic phases

• Thus, region $T < T_U$ corresponds predominantly to the hadron phase, and region $T > T_U$ to the quark-gluon phase.

• The prediction about the connection between **hadronization** and **phase transition at Unruh temperature** is qualitatively confirmed!

Conclusion and Outlook

Conclusion

- The Unruh effect, from the point of view of statistical quantum mechanics, leads to **vanishing of averages** (e.g., the energy-momentum tensor) at $T = T_U$ Averages can be found in ordinary flat space from effective **statistical** interaction.
- We have **shown Unruh effect in statistics** explicitly for massless and massive free fields with spins 0 and ½.
- The obtained corrections correspond to the corrections in the field of the **cosmic string**.
- We have constructed an analytical continuation to the temperature region below the Unruh temperature. At $T = T_U$ a **quantum phase transition** occurs, associated physics near horizon.
- An analogy between the region $T < T_U$ and **falling** into a **black hole** is proposed.
- Interpretation of **hadronization** as an effect associated with a phase transition was proposed.
- Using the parton-hadron-string dynamics (PHSD) framework we modeled the Au-Au collisions and obtained the **distribution of acceleration** at different **time** moments.
- It is confirmed that at the initial moments of time, regions $T < T_U$ were formed.
- A separation of phases (QGP and hadrons) is observed relative to -- confirms (qualitatively) the connection between hadronization and the phase transition at $T = T_U$.

Outlook

• Systems with **other spins** and **other horizons**?

-- the relationship with the non-unitarity of the Lorentz group representations allows us to expect a similar effect for any spins except 0. The space, e.g. near the horizon of a black hole is described by the Rindler metric.

• "Tabletop experiment": **analogy** with the **Casimir effect** – similar effects for different configurations of conducting plates?

-- for example, the Casimir wedge is (almost) mathematically identical to the conical space.