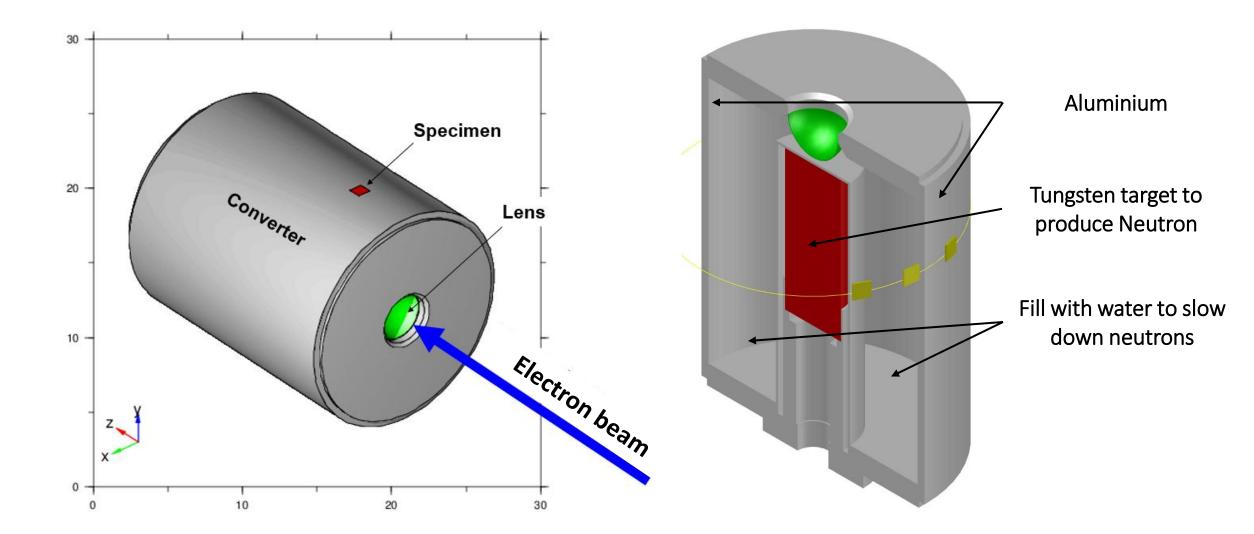
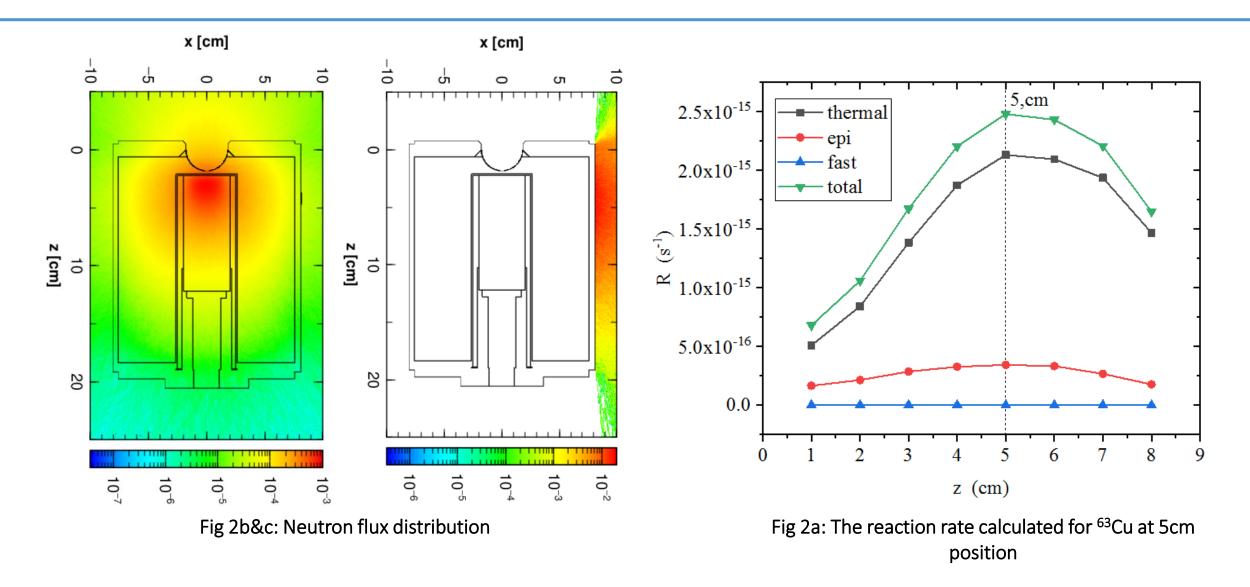
Calculation of self-shielding correction for Neutron activation experiments at IREN facility using PHITS and MCNP6


The Neutron self-shielding Factor is a correction factor that accounts for the effect of neutron absorption within the activation sample itself, which causes the neutron flux inside the sample to be non-uniform compared to the external flux.

The self-shielding effect depends on several factors:


- neutron absorption cross-section of the element,
- sample's shape,
- elemental composition
- is strongly influenced by the spatial and energy distribution of the neutron field

This effect must be calculated separately for thermal and epithermal neutrons due to their distinct energy distributions.

IREN Converter Structure

Neutron flux distribution in IREN

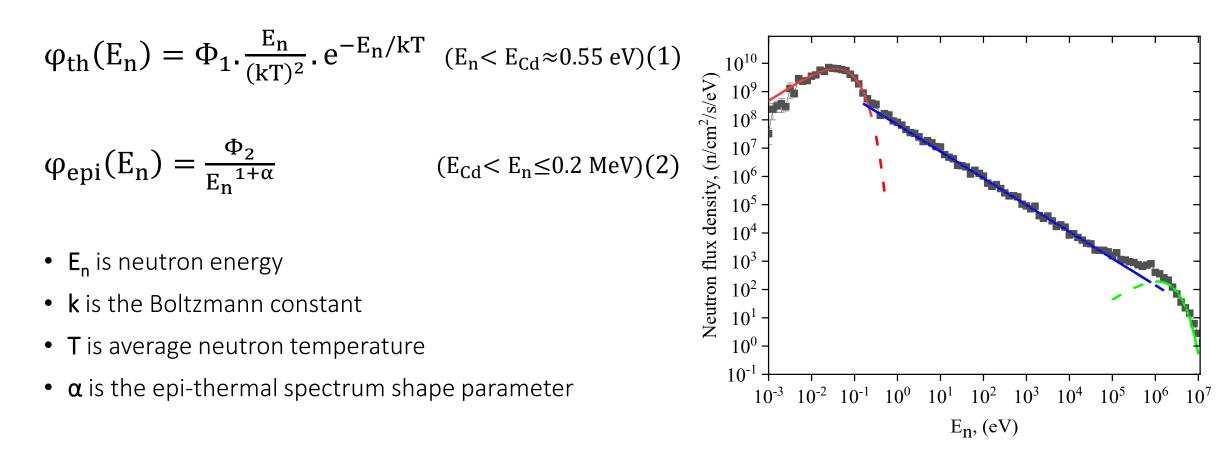
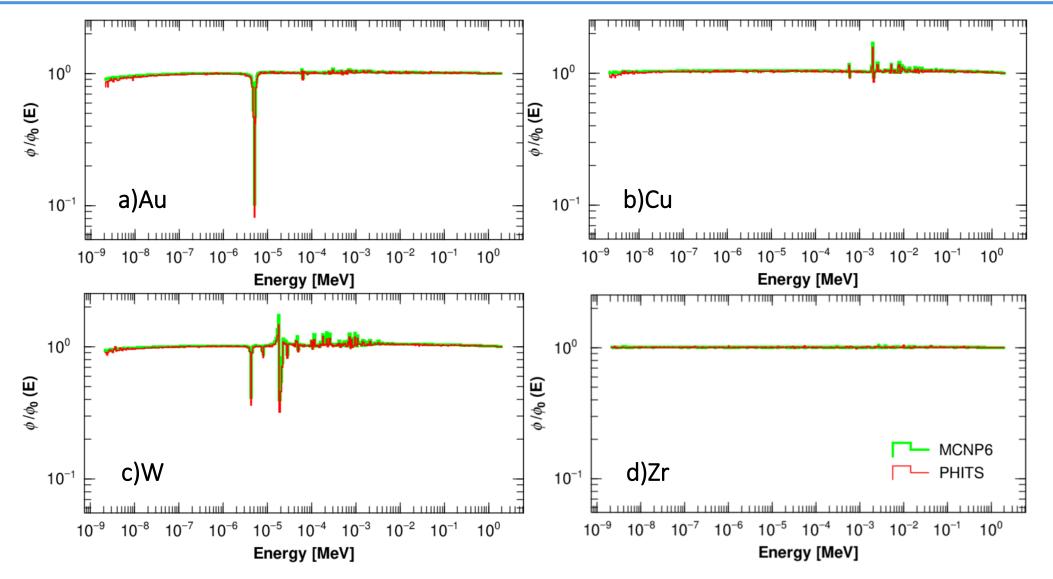


Fig 3: Neutron flux spectrum through surface 1x1cm at 5cm position

Neutron self-shielding factors

Author, year	Neutron source geometry	Neutron energy spectrum	Specimen geometry	Specimen material	Evaluated G-factor
Salgado et al., 2004	// beam, iso. field	am, iso. field Epithermal (monoenergetic, 1/E)		²³² Th, ¹⁹⁷ Au and ⁵⁶ Fe	G _{res} , G _{res*}
Goncalves et al., 2002; Goncalves et al., 2001*	// beam, iso. field	Around resonance region (1/E)	Foil, wire	⁵⁹ Co, ⁶³ Cu, ¹⁹⁷ Au, ¹¹⁵ In, ⁵⁵ Mn, ¹⁸⁵ Re	G _{res}
Goncalves et al., 2001**	calves et al., 2001** // beam, iso. field Epithermal, around resonance region (Foil, wire	Au, Co, Mn	G _{res}
Goncalves et al., 2004	// beam, iso. field Around resonance region (1/E)		Cylinder	⁵⁹ Co, ⁶³ Cu, ¹⁹⁷ Au, ¹¹⁵ In, ⁵⁵ Mn, ¹⁸⁵ Re	G _{res}
Martinho et al., 2003	, 2003 iso. field Around resonance region (1/E)		Foil, wire, sphere	⁵⁹ Co, ⁶³ Cu, ¹⁹⁷ Au, ¹¹⁵ In, ⁵⁵ Mn, ¹⁸⁵ Re	G _{res}
Martinho et al., 2004	iso. field	Thermal (Maxwellian)	Foil, wire, sphere, cylinder	Al, Au, Cd, Co, Cu, Eu, Gd, In, Ir, Mo, Ni, Pb, Pt, Rh, Sc, Sm, Ta	G _{th}
This work	Spatial and spectral neutron source	fidelity to the electron-beam-driven	Foil	Au, Cu, W, Zr	G _{th} , G _{epi}


Table 2: Samples used in experiments and The G-factor is defined as the ratio of the reaction rate in simulations the actual sample to that in an infinitely diluted sample (Goncalves et al., 2002):

$$G = \frac{\int_{E_1}^{E_2} \phi(E)\sigma(E)dE}{\int_{E_1}^{E_2} \phi_0(E)\sigma(E)dE}$$
(3)

- $\phi(E)$ and $\phi_0(E)$ are the neutron flux energy distributions in the actual and infinitely diluted sample, respectively;
- E_1 and E_2 define the integration bounds (for G_{th} : $E_1 = 10^{-3} \text{ eV}$ and E₂ = 0.5 eV; for G_{epi}: E₁ = 0.5 eV and E₂ = 0.2 MeV);
- $\sigma(E)$ is the energy-dependent (n, γ) reaction cross-section.

Foil	Density (g/cm ³)	Dimension (mm)	lsotopes			
Au	19.32	10x10x0.1	¹⁹⁷ Au (100%)			
Cu	8.96	96 10x10x0.5 ⁶³ Cu (69.15%), ⁶⁵ Cu (30.85%)				
W	19.3 10x9x0.35		¹⁸⁰ W (0.12%), ¹⁸² W (26.5%), ¹⁸³ W (14.31%), ¹⁸⁴ W (30.64%), ¹⁸⁶ W (28.43%)			
Zr	6.51	10x9x0.1	⁹⁰ Zr (51.45%), ⁹¹ Zr (11.22%), ⁹² Zr(17.15%), ⁹⁴ Zr (17.38%), ⁹⁶ Zr (2.8%)			

Transmission function ($\phi/\phi_0(E)$)

Results & Discussion

Tuble 5. comparison of Neutron sen sinclaing factor results norm 2 sinialations							
lsotopes	Gth			Gepi			
	PHITS	MCNP	Diff_Gth	PHITS	MCNP	Diff_Gepi	
197Au	0.962±0.006	0.974±0.004	1.2%	0.337±0.009	0.360±0.001	6.3%	
63Cu	1.018±0.016	1.026±0.014	0.8%	0.979±0.030	0.988±0.009	1.0%	
94Zr	1.003±0.014	1.006±0.007	0.2%	1.004±0.043	1.007±0.006	0.4%	
96Zr	1.003±0.007	1.006±0.005	0.2%	1.001±0.076	1.009±0.004	0.7%	
186W	0.982±0.007	0.989±0.004	0.7%	0.496±0.016	0.541±0.002	8.4%	

Table 3: Comparison of Neutron self-shielding factor results from 2 simulations

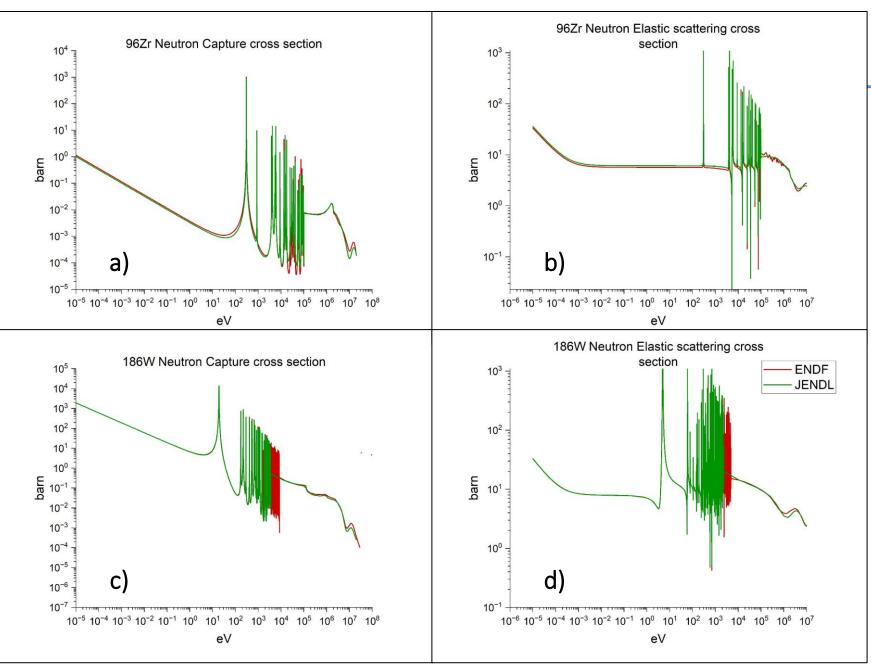
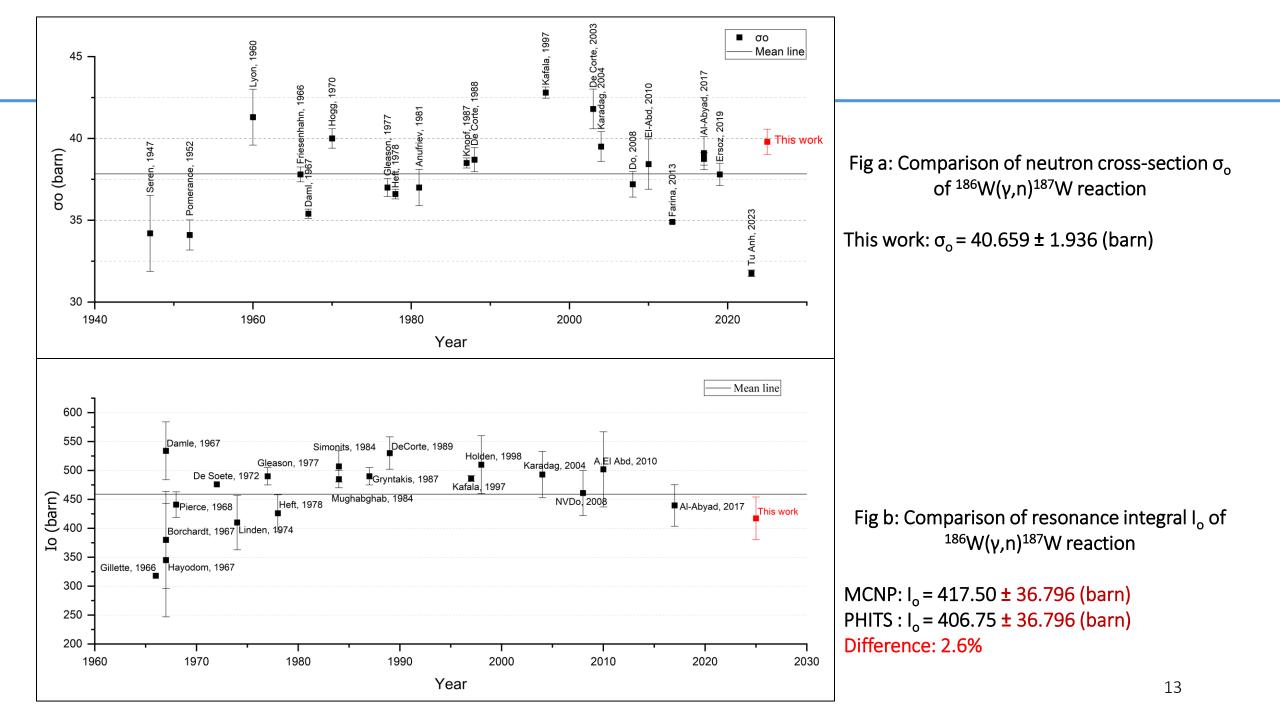


Fig: Comparison of neutron section between ENDF and JENDL

Thermal neutron cross-section

Formula to determine Thermal neutron cross-section σ_0 as follows:

$$\sigma_{0,x} = \sigma_{0,Au} \times \frac{R_x - F_{Cd} R_{x,Cd}}{R_{Au} - F_{Cd} R_{Au,Cd}} \times \frac{G_{th,Au} \cdot g_{Au}}{G_{th,x} \cdot g_x} \quad (6)$$

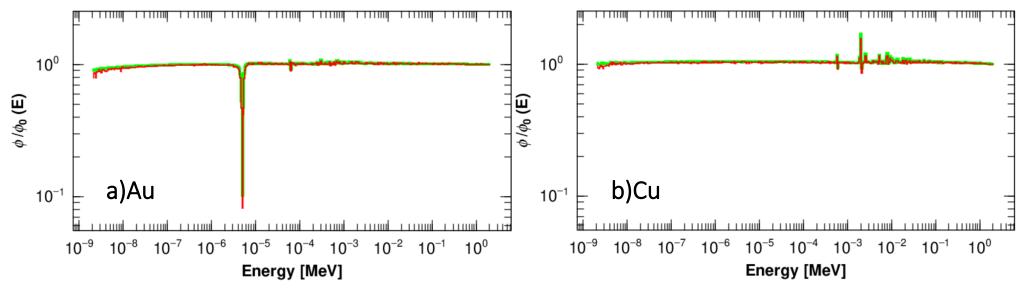

- $\sigma_{0,Au} = 98.65 \pm 0.09$ barn
- R_x and $R_{x,Cd}$ are reaction rates per atom for isotope in bare and Cd-covered
- **F**_{cd} is cadmium correction factor
- $\mathbf{g}_{\mathbf{x}}$ is Westcott factor correction
- **G**_{th} is thermal neutron self-shielding factor

Resonance integral

Formula to determine Resonance integral $I_0(\alpha)$:

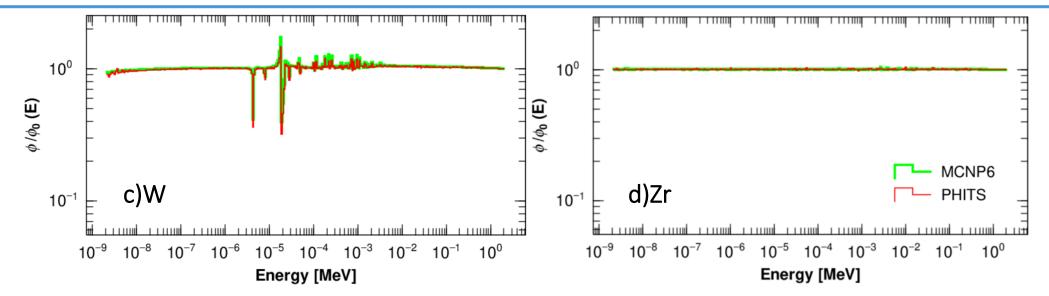
$$I_{0,x}(\alpha) = I_{0,Au}(\alpha) \times \frac{\sigma_{0,x} g_x}{\sigma_{0,Au} g_{Au}} \times \frac{(CR - F_{Cd})_{Au}}{(CR - F_{Cd})_x} \times \frac{G_{e,Au} G_{th,X}}{G_{th,Au} G_{e,x}}$$
(7)

- I_{0,Au} = 1550 ± 28 barn
- CR = $\frac{R_x}{R_{x,Cd}}$
- R_x and $R_{x,Cd}$ are reaction rates per atom for isotope in bare and Cd-covered
- **F**_{cd} is cadmium correction factor
- $\mathbf{g}_{\mathbf{x}}$ is Westcott factor correction
- G_{th} is thermal neutron self-shielding factor
- **G**_e is epi-thermal neutron self-shielding factor



Conclusion

- PHITS v3.21 uses JENDL-4.0 nuclear data library (Shibata et al., 2011).
- MCNP6.1 uses ENDF/B-VII.1 (Kulesza et al., 2022).
- The Gth values obtained from the two computational codes show a discrepancy of less than 1.2%, indicating good agreement and reliability of the results.
- The observed differences in neutron self-shielding factors in the epithermal region, particularly for ¹⁹⁷Au (6.3%) and ¹⁸⁶W (8.4%), are primarily caused by significant difference in the neutron cross sections between the nuclear data libraries employed.
- Results and calculations are still being updated.


THANKS FOR YOUR ATTENTION

Transmission function ($\phi/\phi_0(E)$)

In the $\phi/\phi_0(E)$ spectrum of gold – a high neutron absorber (**Fig.a**), a pronounced dip ($\phi/\phi_0 = 0.08$) occurs at the energy groups of 4.75–5.0 eV, corresponding to the strong resonance absorption of ¹⁹⁷Au (27×10³ barns at 4.9 eV) (Shibata et al., 2011). Depression in the thermal energy region reflects the dominance of absorption crosssection over that of scattering ($\sigma_{\gamma} > \sigma_{s}$) herein. In the $\phi/\phi_0(E)$ spectrum of copper (Fig.b), minimal spectral variation is observed except near 1.9–2.1 keV, where ϕ/ϕ_0 peaks at 1.42 (1.9–2.0 keV) before declining to 0.85 (2.0–2.1 keV). As a neutron scatterer ($\sigma_s > \sigma_\gamma$) (Shibata et al., 2011), this behavior arises from resonance self-shielding, whereas neutrons near resonance energies undergo multiple scattering, delaying absorption until energy loss shifts them below resonance thresholds (Goncalves et al., 2002).

Transmission function ($\phi/\phi_0(E)$)

The transmission spectrum $\phi/\phi_0(E)$ for tungsten (**Fig.c**) exhibits complex energy-dependent behavior due to contributions from its isotopic composition (¹⁸⁰W, ¹⁸²W, ¹⁸³W, ¹⁸⁴W, and ¹⁸⁶W). Pronounced dips in ϕ/ϕ_0 , attributed to resonance absorption, occur at the energy groups of 4.0–4.25 eV ($\phi/\phi_0 = 0.33$), 18–19 eV ($\phi/\phi_0 = 0.36$), 19–20 eV ($\phi/\phi_0 = 0.38$), 20–21 eV ($\phi/\phi_0 = 0.59$), and 21–22 eV ($\phi/\phi_0 = 0.54$). Localized increases in ϕ/ϕ_0 , similarly to copper's behavior, arise from neutron scattering moderation effects prior to absorption below resonance energies. For zirconium (**Fig.d**), $\phi/\phi_0 \sim 1$ across all energy groups, indicating negligible self-shielding. This neutrality stems from zirconium's low absorption and scattering cross-sections. A 0.1 mm zirconium foil thus introduces minimal perturbation to the neutron field, validating its use as a reference material in irradiation geometries where selfshielding corrections are unnecessary.

Neutron self-shielding factor in isotropic neutron field

Table 2: Comparison of Neutron self-shielding factor in isotropic neutron field							
lsotopes	Gth			Gepi			
	MATSSF Code (Trkov et al. 2009)	MCNP	Diff_Gth	MATSSF Code (Trkov et al. 2009)	MCNP	Diff_Gepi	
197Au	0.8837±0.0084	0.8648±0.0242	2.1%	0.2142±0.009	0.2777±0.0123	22.8%	
94Zr	0.9997±0.0015	0.9975±0.0032	0.2%	0.9812±0.0018	1.0062±0.0223	2.5%	
96Zr	0.9997±0.0015	0.9975±0.0032	0.2%	0.9773±0.0018	0.9972±0.0715	2.0%	
186W	0.9168±0.0017	0.9120±0.0192	0.5%	0.2524±0.0023	0.3588±0.0215	29.7%	

$$R_{th,x} = \Phi_{th} \cdot \sigma_{0,x} \cdot G_{th,x} \cdot g_x$$
(4)

$$R_{e,x} = \Phi_e I_{0,x}(\alpha) G_{e,x} = F_{Cd} R_{x,Cd}$$
 (5)

- $R_{th,x}$ and $R_{e,x}$ are reaction rates per atom for isotope in the thermal and epi-thermal energy regions of neutrons