Response of LaBr3 scintillation detector on 14.1 MeV neutrons irradiation

FLinP

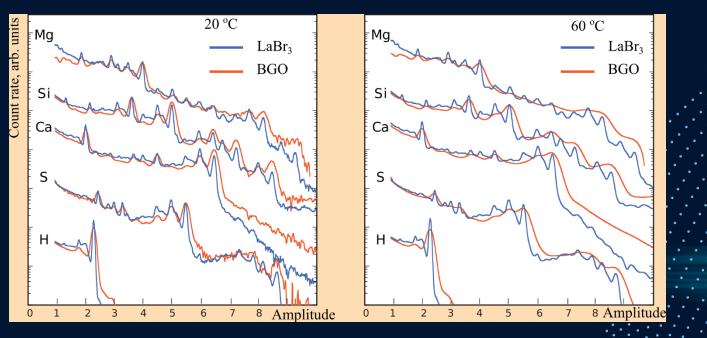
The presented study is supported by the RSCF grant No 23-12-00239

nfedorov@jinr.ru

N.A. Fedorov,

FLNP JINR,

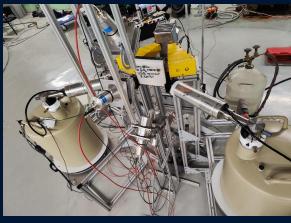
On behalf of the TANGRA collaboration


Motivation

- Lanthanum(III) bromide (LaBr₃) based detectors became more and more popular:
 - Best energetic resolution for scintillators (~14 keV FWHM for 662 keV)
 - Low light output drift on temperature

Motivation

- Lanthanum(III) bromide (LaBr₃) based detectors became more and more popular:
 - Best energetic resolution for scintillators (~14 keV FWHM for 662 keV)
 - Low light output drift on temperature

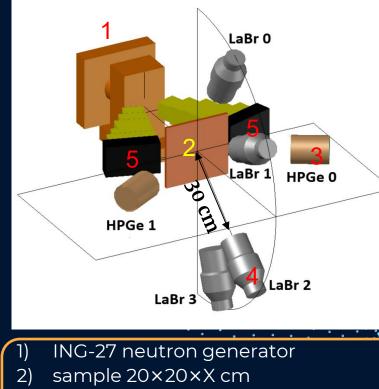


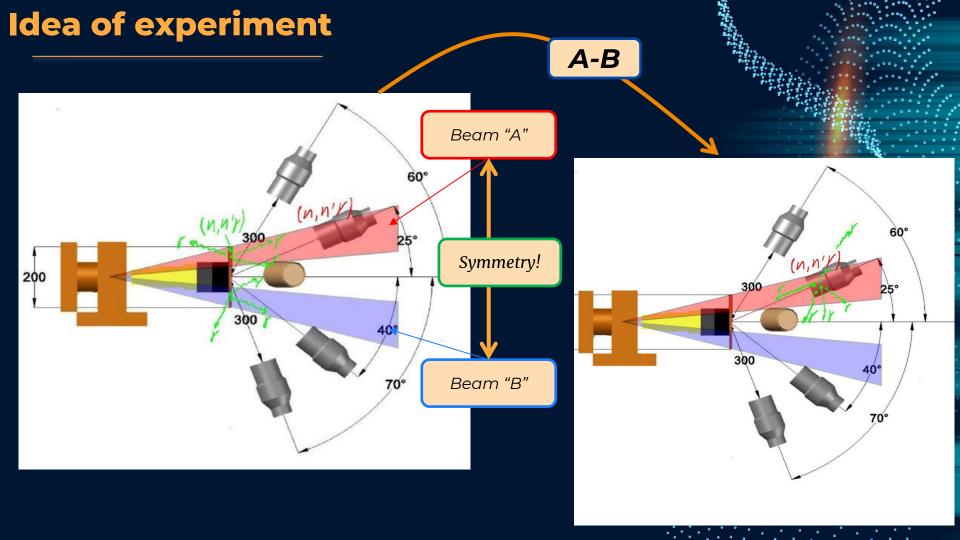
Motivation

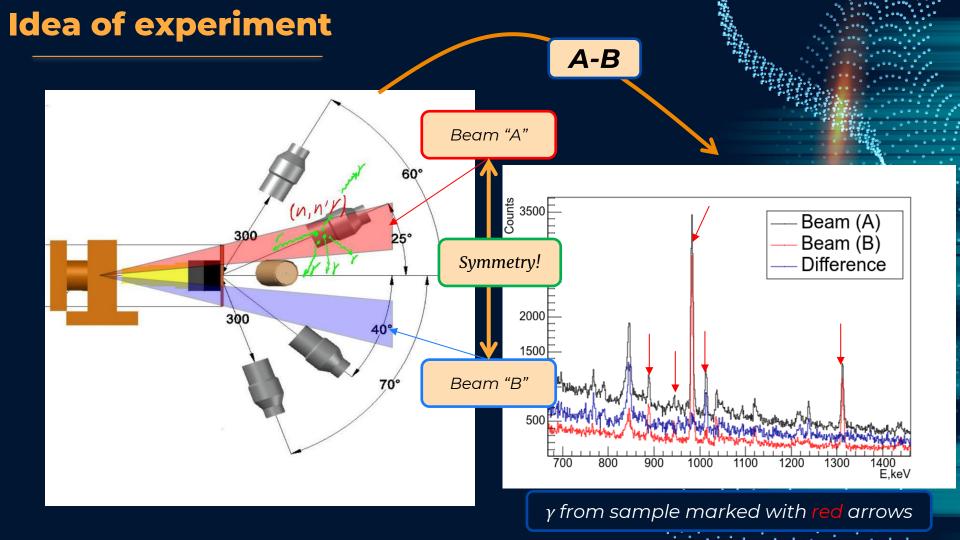
- Lanthanum(III) bromide (LaBr₃) based detectors became more and more popular:
 - Best energetic resolution for scintillators (~14 keV FWHM for 662 keV)
 - Low light output drift on temperature
- Used in many nuclear facilities/devices


OSCAR

TANGRA


The tagged neutron method (TNM) & **TANGRA** setup


Tagged neutrons flux: 10⁶ neutr/sec


Interesting for nuclear reactions research:

- Angular distributions of n and γ
- Correlation between n and γ

- 3) HPGe γ -detector (2 pcs, 60% eff)
- 4) LaBr₃ detector (4 pcs)

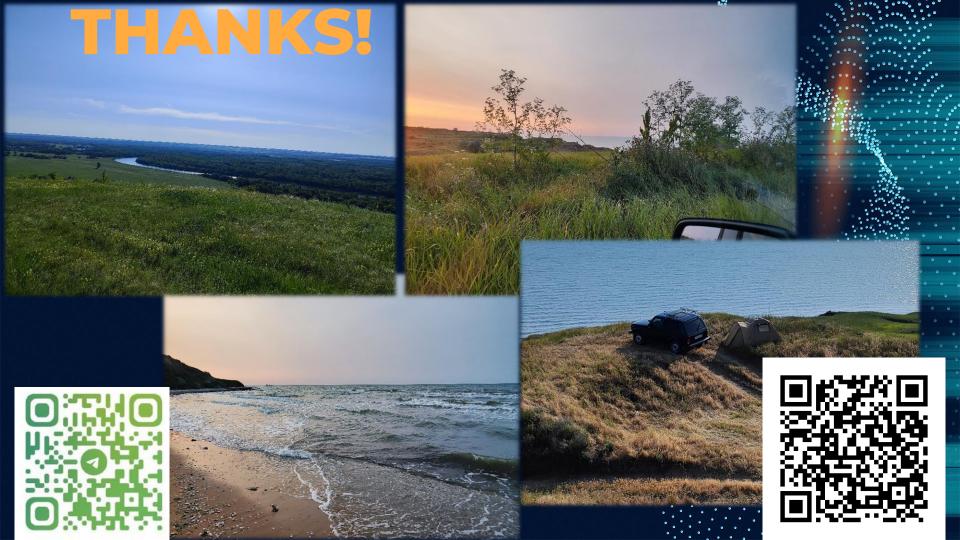
Results

$Y_i = \frac{S_i \mathcal{E}_0}{S_0 \mathcal{E}_i}$

- S-area of full energy absorption peak
- ε correction coefficient (includes efficiency of the HPGe detector, solid angle and self-absorption in LaBr)
- *i*-investigated peak
- 0 reference peak

Reference line marked with **red** Reactions leads to activation marked with <mark>orange</mark>

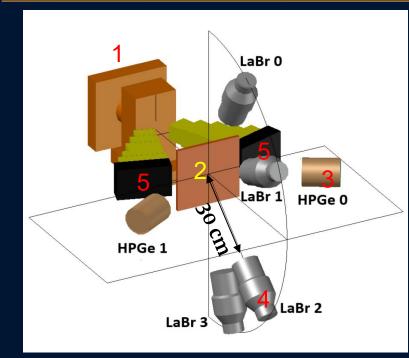
Eγ, keV	Target	Reaction	Yield,%
88,7	¹³⁹ La	(n,2n)	161(11)
165,9	¹³⁹ La	(n,n')	34(7)
217,1	⁷⁹ Br	(n,n')	83(4)
230,4	¹³⁹ La	(n,2n)	42(3)
243,5	⁷⁹ Br	(n,2n)	87(2)
260,8	⁸¹ Br	(n,n')	29(4)
276	⁸¹ Br	(n,n')	100
291,4	¹³⁹ La	(n,n')	27(10)
306,5	⁷⁹ Br	(n,n')	34(17)
340,7	¹³⁹ La	(n,2n)	17(4)
381,5	⁷⁹ Br	(n,n')	27(2)
523,1	⁷⁹ Br	(n,n')	20(2)
562,4	⁸¹ Br	(n,n')	20(3)
613,7	⁷⁹ Br	(n,np)	80(9)
640,6	⁸¹ Br	(n,n')	19(2)
767	⁸¹ Br	(n,n')	28(2)
789,4	⁸¹ Br	(n,n')	22(4)
1043,1	¹³⁹ La	(n,n')	41(8)
1219	¹³⁹ La	(n,n')	41(10)
1237	⁸¹ Br	(n,n)	26(2)


Identified 47 γ – transitions in total

Conclusion & TODO

- Applied technique allowed us to extract γ yields for reactions in LaBr in "parasite" mode from data obtained in regular measurements
- There are no data for La and Br at 14MeV in EXFOR probably this data obtained for the first time
- Identified 47 γ transitions in total

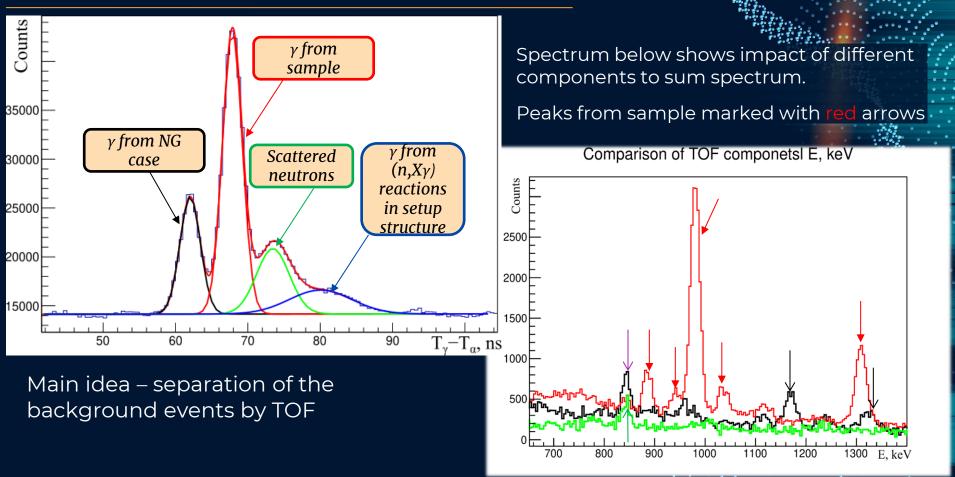
TODO


- Perform regular measurement with La sample and Brcontained sample (planned in 2025) to extract angular distribution of γ – quanta and measure cross-sections
- Create a response function to use it for neutron background subtraction

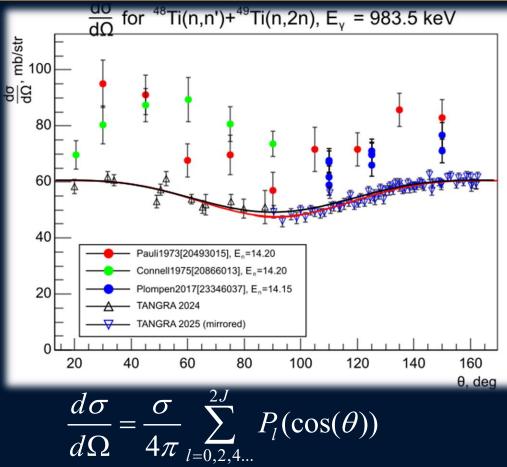
Backup

- Here the important materials about data processing are stored. They were not included i main presentation because of lack of time.
- Don't hesitate to ask me about that!

Measurements of the γ -quanta emission cross-sections & angular distributions

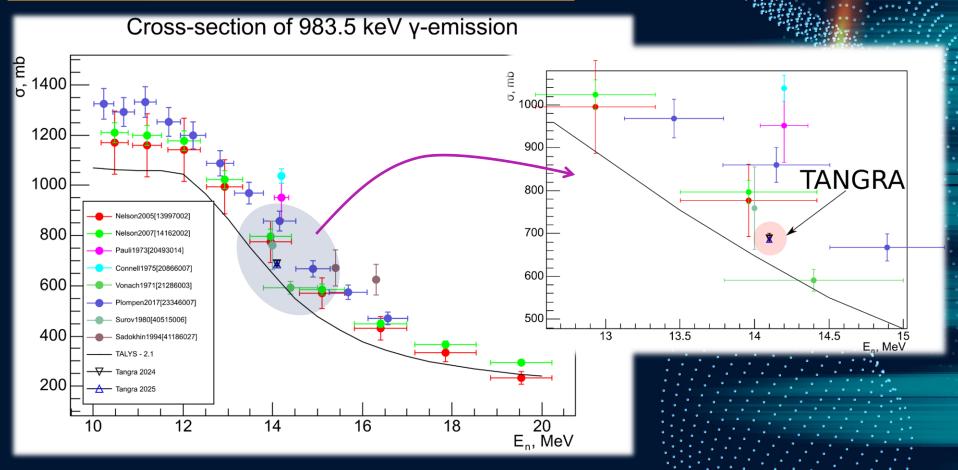


- 2) sample 20×20×X cm
- 3) HPGe γ -detector (2 pcs, 60% eff)



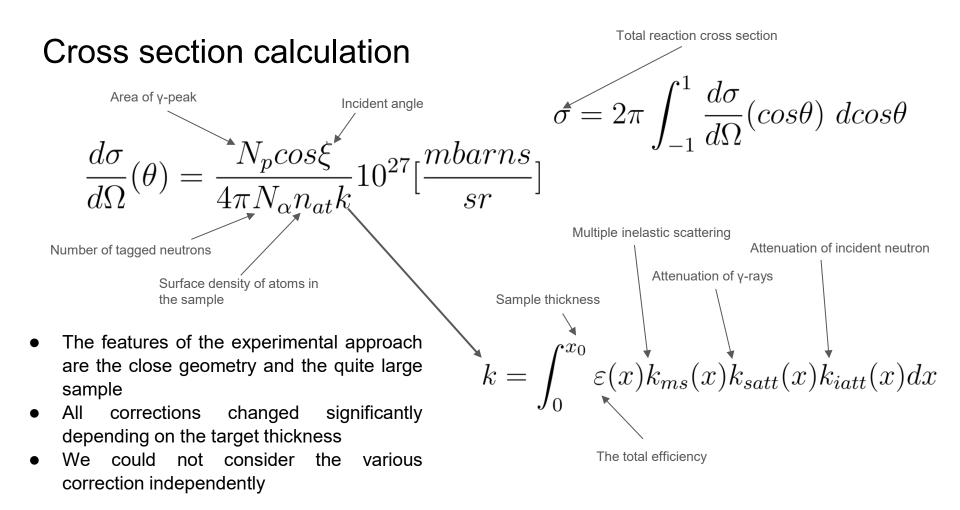
- 4) LaBr₃ γ -detector (4 pcs)
- + Fast measurement
- Extreme detector load (~8×10⁴ cps)

Data processing with TNM



Measurements of the γ-quanta emission cross-sections & angular distributions (TiO₂ sample)

					• •		
Eγ, keV	Reaction	Reference	σ, mb	<i>a</i> ₂	a_4		
983,5 keV		Pauli 1973	940 (30)	0,31(8)	-0,1(1)		
		Connell 1975	1020 (30)	-0,02(5)	-0.26(9)		
	⁴⁸ Ti(n,n') ⁴⁹ Ti(n,2n)	Plompen 2017	^m 842 (15) 0,16(4		-0,08(7)		
		TANGRA 2024	690 (10)	0,16(3)	-0,05(4)		
		TANGRA 2025	685 (3)	0,18(1)	-0.06(1)		
 And 19 γ-lines more 							


Measurements of the γ-quanta emission cross-sections & angular distributions (TiO₂ sample)

Current status of measurements

	ГРУППЫ									
ПЕРИОДЫ	ΑΙΒ	A II B	A III B	А ІV В	АVВ	A VI B	AVII B	Α	VIII B	
1	Н 1,0079 1 1s ¹ 1 Водород						н	Не 4,00260 ² 1s ² 2 Гелий	масса Порядковый	
2	Li 6,941 25 ¹ 2 Литий	Ве 9,01218 ⁴ 25 ² 5ериллий			N 14,0067 25 ² 2p ³ 5 A30T	О 15.9994 2 <i>s²2р⁴</i> 5 Кислород		Ne 20,179 25 ² 2p ⁶ 8 Heore	Н 1.0079 1.8 ¹ Конфигурация 1. Водород электроног	x
3	Na 22,9898 ¹¹ 35 ¹ 2 Натрий	Mg 24,305 ¹² 3s ² Магний	2 Al 26,9815 3 35 ² 97 2 Алюминий	Si 28,0855 3 <i>s</i> ² 3 <i>p</i> ² 5 Кремний	Р 30,9738 5 38 ² 3р ³ 2 Фосфор	S 32.05 5 3 <i>s</i> ² 3 <i>p</i> ⁴ 2 Cepa	СІ 35,453 7 3s ² 3p ⁵ ⁶ Хлор	Аг _{39,948} 8 3 <i>s</i> ² 3 <i>p</i> ⁶ 2 Аргон	Распределение электронов по уровням	
4	К <u>19,093</u> 4,3 ¹ 82 Калий 29 Си 3,3 ⁽¹⁰ 49 ¹) ¹	Са 40,08 20 45 ² Кальций 30 2 П 30 ¹⁰⁴⁵²	21 44,а55 30/45 ² Скандий 60,72	22 47,98 3/2 ⁴ 4s ² Титан Ge 72,59 4s ² 4p ² Голманий	23 50,9415 За/345 ² Ванадий Аз 74,9216 18 4s ² 4p ³	24 31,966 Xpon Se 78,95 4 3 78,95 4 3 78,95 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 5 2	25 3d ⁹ 4s ² Марганец 2 3 Вг 79,004 4s ² 4p ⁵ 50000	26 30 ⁶ 4s ² Железо Кг 83,80 4s ² 4p ⁶ Криптон	27 3d/4s ² Kođanur	2025
5	186 85,4678 18 551 2 Рубидий 47 67,865 407 0551 Серебро		2 39 39 40 ^{/15/2} 1 Иттрий 2 3 In 114,82 18 58 ² 50 ¹ 58 ² 50 ¹ 14,82 18 14,82 18 14,82 18 14,82 18 18 14,82 18 18 14,82 18 18 18 18 18 18 18 18 18 18	2 40 51,22 42 ² 5s ² 42 ² 5s ² 18 50 55 ² 5p ² 0.0660	2 41 52,5064 Ниобий 55 55 55 55 55 55 55 55 55 55 55 55 55	2 42 95,94 4d ^{95,51} Мо 4d ^{95,51} 13 Молкбден 52 ⁵ 6д ⁴ 52 ⁵ 6д ⁴ Теллур	а 43 1981 46 ⁵ 5s ² 18 Технеций 126,604	2 44 101.07 4d ⁷ 5s ¹ Рутений 8 8 8 8 8 8 8 8 131.29 5 8 5s ² 5p ⁶ 8 8 5ceнон	45 102,005 Ад ⁴⁹⁵ 5 ¹ Родий 2 Родий 2 Сапладий	
6	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	ава 137,33 ⁵⁶ 65 ² Барий 80 507,0659 Барий	57 138,805 50/65 ² Лантан 18 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	72 178,49 50 ² 65 ² Гафиний 18 Pb 207,2 55 ² 60 ² 65 ² 60 ² Спинаци	73 180,9470 50 ³ 68 ² Тантал 2 18 В1 208,980 68 ² 60 ³ 8 8000 8 8000	74 193.85 50 ⁴ 65 ² Вольфрам 18 65 ² 6р ⁴ 65 ² 6р ⁴ Полоний	75 186,207 5d ⁵ 6s ² 18 Рений 8 17 17 Аt (210) 6s ² 6p ⁵ 6s ² 6p ⁵ Астат	76 190,2 5 <i>d</i> ⁶ 6 <i>s</i> ² 18 Осмий 8 18 18 6 <i>s</i> ² 6 <i>p</i> ⁶ 18 6 <i>s</i> ² 6 <i>p</i> ⁶ 18 6 <i>s</i> ² 6 <i>p</i> ⁶ 18 6 <i>s</i> ² 6 <i>p</i> ⁶ 18	77 192.22 Бб ⁷ бв ² Иридий в Платина	
7	¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ²⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ 		89 [227] 6d ⁷ 7s ² Ас ^{**} 6 10 10 10 10 10 10 10 10 10 10 10 10 10	104 [261] 6d ² 75 ² Fl 114 [289] Флеровий	105 [262] Db 12 6d ³⁷ 5 ² Дубний Mc 115 [288] Московий	106 [266] Sg 6d ⁴⁷ 5 ² Сиборгий Lv 116 [293] Ливерморий	107 [264] 6d ⁵ 7s ² Борий ТS 117 [294]	108 [269] 6d ⁶ 7 <i>s</i> ² Гассий Og 118 [294]	6 <i>d⁷7s²</i> 386 <i>d⁹7s¹</i> 3 Мейтнерий 8 Дармштадтий	
								·		
⁵⁸ Се ⁵⁹ Р ^{140,12} ^{4/15d/16s²} ¹⁹ ^{4/3} 6s ² Церий ² Празеоди	21 18 4/46s ² 1	4f ⁵ 6s ² 23 18	62 Sm 63 150,36 8 151,5 4л ⁶ 6s ² 24 47 ⁷ 6 Самарий 2 Евро	Eu ⁶⁴ G ^{57,25} ⁵² ²⁵ ⁵⁴⁷ Бадолин	d 2 25 2 25 4/ ⁹ 6s ² тербий	66 Ду 162,50 28 277 18 18 4f ¹⁰ 6s ² 28 28 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	67 Но 164,930 29 4/ ¹¹ 6s ² 29 Гольмий 29	Ег ⁶⁹ 7 7,26 ⁸ 168,93 ² 6s ² ³⁰ 4/ ¹³ 6s бий ⁸ Тулий	$2 \frac{31}{18} 4f^{14}6s^2 \frac{32}{18} 4f^{14}5d^{1}6s^2 \frac{32}{18}$	A the first of the
90 Th 10 (231) 6d ² 7s ² 12 5f ² 6d ¹ 7s ² Торий 2 Протактин	20 238.029 32 18 5/ ³ 6d ¹ 7s ²	5f46d17s2 18	94 Ри ⁸ ^[244] ²⁴ ^[243] 5 ⁷⁶⁷ s ² ³⁶ 5 ⁷⁷ Плутоний ² Аме	2 18 5f ² 6d ¹ 7s ⁴	n 26 25 2 32 2 32 2 32 2 57 ⁸ 6d ¹ 7s ² Берклий	32 18 5f ¹⁰ 7s ² 18	99 Es 28 [252] 29 [25 5f ¹¹ 7s ² 18 5f ¹¹ Эйнштейний 2 Фе	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Md 2 102 No 2 103 Lr 2 16 5/14792 16 5/1460/1752 элевий 2 Нобелий 2 Лоуренсий	As a first under

2025

Algorithm for determining the correction factor

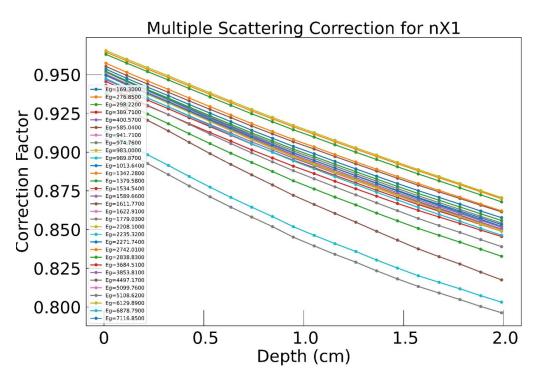
There are two ways to calculate corrections:

- To calculate them independently in dependence on the sample thickness and take the integral
- To simulate the total thickness-integrated correction in the GEANT4 using a separate ones as weighting factors

Correction features:

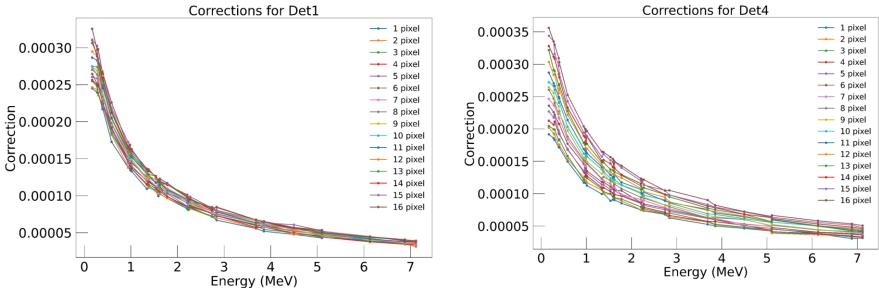
- Multiple inelastic scattering overstates the number of emitted γ-rays
- Attenuation of incident neutrons and $\gamma\text{-rays}$ understates the number of emitted $\gamma\text{-rays}$

Simulation features:

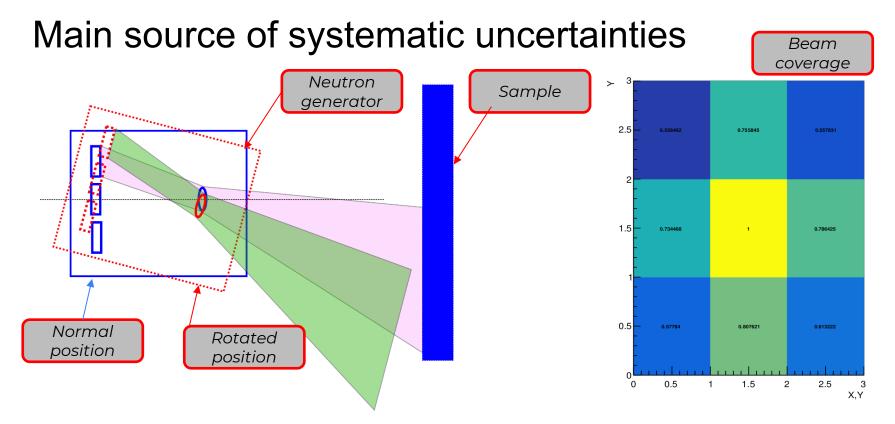

- 2 stage neutron transport and γ-rays transport simulation
- The inelastic multiple scattering is used as a probability factor increasing the number of emitted γ-rays in comparison with its real number
- The inelastic multiple scattering correction calculates taking into account the energy dependence of emission cross section for specific γ-line taken from TALYS for each interaction point
- The correction factor resulted included thickness-integrated multiple scattering, absorption and efficiency coefficients

Simulation of the interaction point and neutron spectra depending on thickness

Calculation of the inelastic multiple scattering correction depending on the thickness

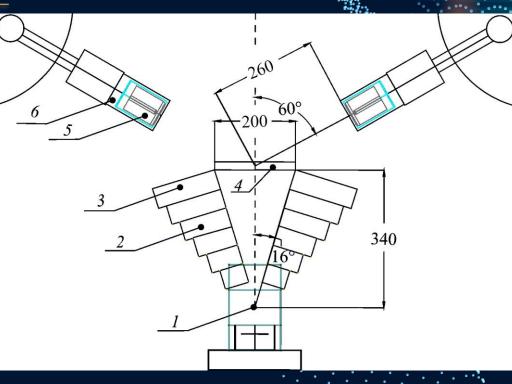

> Simulation of γ-rays detection efficiency emitting them from the interaction points

Example of the multiple scattering correction



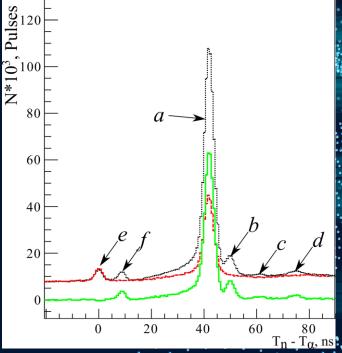
Multiple scattering correction factor depending on the sample thickness. The example corresponding to the SiO_2 sample and first vertical strip

Integrated correction factors using the example of the SiO_2 sample

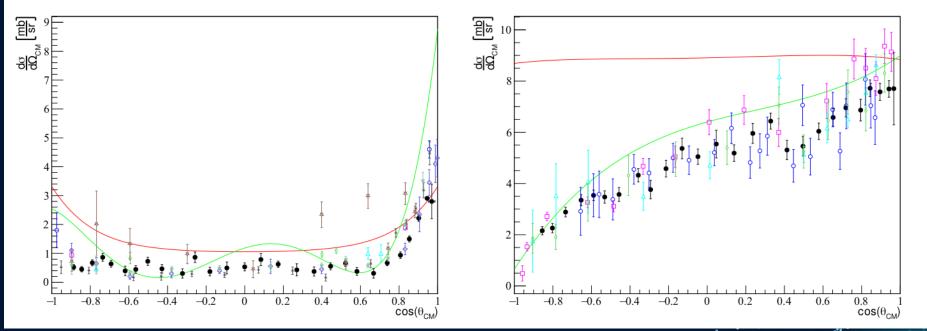

The correction factors including the attenuation correction, total efficiency and multiple inelastic scattering corresponding to the various $LaBr_3$ detectors


Small rotation of the NG could lead to dramatic change of target coverage. It could be corrected by relative calibration to central pixel and rotation angle could be adjusted to minimize CS difference between pix-det combinations with small difference in angle

Configuration for γ -quanta emission CS measurement


- 1-ING-27, 2-iron-, 3-lead parts of the collimator, 4sample, 5-HPGe crystal, 6case of the detector.
- Updated "HPGe" setup contains two ORTEC-made spectrometers with relative efficiency of 60%
- Set of LaBr detectors will be used to measure the γangular distribution

Measurement of *n'* angular distributions and n' y correlations



 1-ING-27 neutron generator, 2-sample, 3-PFT n-detector

a -direct and elastically scattered neutrons, *b*-4.4 MeV, *c*-7.6 MeV, *d*-9.6 MeV excited states, *e* -γ-quanta emitted from case of the ING-27, *f*- γ from sample

• 9.6+9.8+9.9 MeV states

- 7.6 MeV state (Hoyle state)
- Green line ENDF-B-VIII
- Red line TALYS