Response of LaBr₃ scintillation detector on 14.1 MeV neutrons irradiation

JAP

The presented study is supported by the RSCF grant No 23-12-00239

nfedorov@jinr.ru

N.A. Fedorov,

FLNP JINR,

On behalf of the TANGRA collaboration

Motivation

- Lanthanum(III) bromide (LaBr₃) based detectors became more and more popular:
 - Best energetic resolution for scintillators (~14 keV FWHM for 662 keV)
 - Low light output drift on temperature

Motivation

- Lanthanum(III) bromide (LaBr₃) based detectors became more and more popular:
 - Best energetic resolution for scintillators (~14 keV FWHM for 662 keV)
 - Low light output drift on temperature

Motivation

- Lanthanum(III) bromide (LaBr₃) based detectors became more and more popular:
 - Best energetic resolution for scintillators (~14 keV FWHM for 662 keV)
 - Low light output drift on temperature
- Used in many nuclear facilities/devices

OSCAR

TANGRA

The tagged neutron method (TNM) & **TANGRA** setup

Tagged neutrons flux: 10⁶ neutr/sec

Interesting for nuclear reactions research:

- Angular distributions of n and γ
- Correlation between n and γ

- 3) HPGe γ -detector (2 pcs, 60% eff)
- 4) LaBr₃ detector (4 pcs)

Results

$Y_i = \frac{S_i \mathcal{E}_0}{S_0 \mathcal{E}_i}$

- S-area of full energy absorption peak
- ε correction coefficient (includes efficiency of the HPGe detector, solid angle and self-absorption in LaBr)
- *i*-investigated peak
- 0 reference peak

Reference line marked with **red** Reactions leads to activation marked with <mark>orange</mark>

Eγ, keV	Target	<u>Reaction</u>	Yield,%
88,7	¹³⁹ La	(n,2n)	161(11)
165,9	¹³⁹ La	(n,n')	34(7)
217,1	⁷⁹ Br	(n,n')	83(4)
230,4	¹³⁹ La	(n,2n)	42(3)
243,5	⁷⁹ Br	(n,2n)	87(2)
260,8	⁸¹ Br	(n,n')	29(4)
276	⁸¹ Br	(n,n')	100
291,4	¹³⁹ La	(n,n')	27(10)
306,5	⁷⁹ Br	(n,n')	34(17)
340,7	¹³⁹ La	(n,2n)	17(4)
381,5	⁷⁹ Br	(n,n')	27(2)
523,1	⁷⁹ Br	(n,n')	20(2)
562,4	⁸¹ Br	(n,n')	20(3)
613,7	⁷⁹ Br	(n,np)	80(9)
640,6	⁸¹ Br	(n,n')	19(2)
767	⁸¹ Br	(n,n')	28(2)
789,4	⁸¹ Br	(n,n')	22(4)
1043,1	¹³⁹ La	(n,n')	41(8)
1219	¹³⁹ La	(n,n')	41(10)
1237	⁸¹ Br	(n,n)	26(2)

Identified 47 γ – transitions in total

Conclusion & TODO

- Applied technique allowed us to extract γ yields for reactions in LaBr in "parasite" mode from data obtained in regular measurements
- There are no data for La and Br at 14MeV in EXFOR probably this data obtained for the first time
- Identified 47 γ transitions in total

TODO

- Perform regular measurement with La sample and Brcontained sample (planned in 2025) to extract angular distribution of γ – quanta and measure cross-sections
- Create a response function to use it for neutron background subtraction

Backup

- Here the important materials about data processing are stored. They were not included i main presentation because of lack of time.
- Don't hesitate to ask me about that!

Measurements of the γ -quanta emission cross-sections & angular distributions

- 2) sample 20×20×X cm
- 3) HPGe γ -detector (2 pcs, 60% eff)

- 4) LaBr₃ γ -detector (4 pcs)
- + Fast measurement
- Extreme detector load (~8×10⁴ cps)

LaBr structure

Sanit-Gobain B380 igodot

Data processing with TNM

Measurements of the γ-quanta emission cross-sections & angular distributions (TiO₂ sample)

Eγ, keV	Reaction	Reference	σ, mb	<i>a</i> ₂	a_4						
983,5 keV		Pauli 1973	940 (30)	0,31(8)	-0,1(1)						
		Connell 1975	1020 (30)	-0,02(5)	-0.26(9)						
	48 Ti(n,n')	Plompen 2017	842 (15)	0,16(4)	-0,08(7)						
	11(11,211)	TANGRA 2024	690 (10)	0,16(3)	-0,05(4)						
		TANGRA 2025	685 (3)	0,18(1)	-0.06(1)						
 And 19 γ-lines more 											
					• • • •						

Measurements of the γ-quanta emission cross-sections & angular distributions (TiO₂ sample)

Current status of measurements

	ГРУППЫ											3		. · · ·	•••••												
ПЕРИОДЫ	Α	Ιв	Α	II I	3 4	A II	Ιв	A]	IV I	3 1	A J	ЛВ	A	VI I	3 A	VI	Ιв	Α		V	III		В		••••	•••	
1	H	1 _{.0079} 1 1s ¹ Водород													H	[He	4,00260 1 <i>s</i> ² Гелий	От Символ	носительна масс	а атомна: а (атом)	я Порядковый иный) номер	F •••		20	124
2			Be			3							0				,9964 ⁹ 22р ⁵ Фтор	Ne	10 20,179 2 <i>s</i> ² 2 <i>p</i> ⁶ Неон	H ,	1,0079 1s ¹ — Водор	1 Ко	онфигурация валентных электронов			20	
3	Na	1 22,9698 ¹ 3s ¹ Натрий	Mg	3 24,305 3s ² Магн	12 A	AI Ani	13 26,9815 3s ² 3p ¹ оминий	Si	28,0855 3s ² 3p ² Кремни	4 P		15 30,9738 3s ² 3p ³ Росфор	S	32,05 3 <i>s</i> ² 3 <i>p</i> ⁴ Cer	6 C	l 35 38	17 3р ⁵ Хлор	Ar	18 3 _{9,948} 3s ² 3p ⁶ Аргон	Распред электро по уровн	целение нов ням	_	Название		0		
	K				20 21 24 3d 10 C			22 47,68 3 <i>d</i> 24s ² Титан	Ti	23 50) 36 Ba	9415 9 ₄₅ 2 надий	V	24 51,996 3d ⁵ 4s1 Хром	Cr	25 54,5 3d ⁵ Ma	ав 4 <i>s</i> ² рганец	In	26 55,847 Зб ⁵ 4 <i>s</i> ² Железо	Fe	27 58,9332 3 <i>d</i> ⁷ 4 <i>s</i> ² Кобаль	Co	28 58,59 3 <i>d⁶4s²</i> Никел	Ni e			20)25
4	29 63,546 3d ¹⁰ 4; Меде		30 55,39 3d ¹⁰ 4 <i>с</i> Цинк	Zn	Name of									78,95 4s ² 4p ⁴ Cene			35 ^{24р5} Бром		36 ^{83,80} 4 <i>s²4p⁶</i> Криптон								
-	18 18 18 18 18 18 18 18 18 18 18 18 18 1	37 _{85,4678} _{5s¹} Рубидий	28BBBR	е а7,62 Б5 ² Стронц	38 39 88 40 40	9 ,9059 / ¹ 5s ² гтрий	Y	40 91,22 43 ² 55 ² Циркон	Zr	4192. 4092. 40 40 40 40	9064 ⁵ 5 ¹ обий	Nb 1288	42 95,94 4d ⁶ 5s ¹ Молиб	Мо бден	43 [98] 4d ⁵ Tex] 5 <i>s</i> ² кнеций	Γc ² 13 1882	44 ^{101,07} 4d ⁷ 5s ¹ Рутени	Ru 15 18 18 2	45 102,905 4d ⁸ 5s ¹ Родий	Rh	46 105,42 40 ¹⁰ 55					
5	47 107,86 4d ¹⁰ 58 Cepel		48 112,41 4d ¹⁰ 5s Кадмі		28662				1 118.69 ⁵ 5s ² 5p ² Олов	50 5 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			6 Te				53 6,904 ² 5р ⁵ Иод	⁸ X€	131,29 5 <i>s</i> ² 5 <i>p</i> ⁶ Ксенон								
C	18 18 18 18 18 2	S 132,905 6 <i>s</i> ¹ Цезий	None and a state of the state o	a 137.33 6s ² 6ap								Ta ²			75 186 5d ⁵ Per	, ₂₀₇ Г 6 <i>s</i> ² ний	Re 13 32 18 2	76 ^{190,2} 5d ⁶ 6s ² Осмий	Os ² 322 188 2	77 192.22 5 <i>d</i> ⁷ 6 <i>s</i> ² Иридий		78 195,08 5d ⁹ 6s ¹ Плати	Pt 17 32 18 8				
6	79 196,96 5d ¹⁰ 69 Золо	$\mathbf{A}_{57}^{1} \mathbf{A}_{18}^{1}$	80 200,59 50 ¹⁰ 6: Ртуть		31824882 1824882	Tl	81 ^{204,383} 6s ² 6p ¹ Таллий	if Pb		12 132 132 132 132 132 132 132 132 132 1		83 205,980 8s ² 6p ³ Висмут	18 Pc) _[209] 6s ² 6p ⁴ Полоні	34 1821882 чй	$\mathbf{At}_{\mathbf{b}}$	85 ^{10] ²6р⁵ Астат}	18 32 18 22 18 22	86 _[222] 6s ² 6p ⁶ Радон					•••	÷		
7	¹ 8 F 182 182 1882	Г _[223] 87 7s ¹ Франций	28 182 182 188 28 8 28 8 28 8 28 8 28 8	а _[226] 7s ² Раді	38 89 [22 6d ий Ак	Э 27] А 175 ² стиний	C** 100 YEAR	104 [261] 6d ² 7s ² Pesepo	Rf фордий	10 10 122 10 122 10 126 6 <i>d</i> ¹ Ду	5 ^{2]} ³ 7s ² бний	Db 11222	106 ^[266] 6d ⁴ 7s ² Сибор	Sg Iгий	2000000 10 10 10 10 10 10 10 10	7 Е ^{4]} 7 <i>s</i> ² рий	3h Manager	108 ^[269] 6d ⁶ 7s ² Гассий	Hs	109 [268] 6 <i>d</i> ⁷ 7 <i>s</i> ² Мейтне	Mt за	110 ^[271] 6d ⁹ 7s ¹ Дарми	Ds 177 322 штадтий	•	••••	••••	
'	111 [280]	Rg	112 [285]	Cn		Nh	113 [284]	Fl	11 [28	4 9]	Mc	115 [288]	L	7 1	1 6 (3]	Ts	117 [294]	Og	118 [294]					• .	• •		
	Рент	гений	Копе	рниций		н	ихоний	q	Флерови	й	Mo	осковий	Ли	вермори	ий	Тенн	ессин		Оганесон			•	-	•		• • •	
																					· ·	÷		÷			
⁵⁸ Ce ⁵⁹ P ^{140,12} ^{4/15d/6s² ¹⁹ ^{140,908} ^{4/36s²}}	r 2887	⁶⁰ Nd ^{144,24} ⁴⁷⁴ 6s ²	61 [145] 4/ ⁵ 6s	Pm	62 150,3 4/ ⁶ 6	56 52 120140	63 24 151,9 24 18 4f ⁷ 6: 8 Epot	Eu 52 3	64 ² ^{157,25} ²⁵ ^{4f⁷5d¹}	Gd	65 29 158 25 18 4/9	ть 6 <i>s</i> ²	² 27 18 162, 27 4 <i>f</i> ¹⁰	Dy 65 ²	67 28 164,9 88 4f ¹¹ 6	Ho 330 35 ²	68 28 167, 29 4f ¹² 30 9	26 6 <i>s</i> ²	69 7 ² ² ^{168,934} ³⁰ ⁴ ¹³ ⁶⁵	fm 31 188	70 YR 173,04 4/ ¹⁴ 6s ²	71 288 174 322 4f ¹	Lu 4,967 450 ¹ 6s ²			÷	
Черми 51 гразеоди	m 2		i ipor		2 CaM	арии	2 5800		21 440	N N N N N	218	JUN	2400	in positiv	21 0/16	DIV(VIVI	2000		2 гулии	2	Tepoli	• 2 7 110	• •			• •	
90 Th 232,038 бd ² 7s ² 18 5/ ² 6d ¹ 7s ² Торий 2 Протактин	а 290221882	92 U ^{238,029} ş 5/ ³ 6d ¹ 7s ² т /ран	93 [237] 5/ ⁴ 60 Hem	Np 175 ²	94 [244] 5/ ⁶ 7 Плут	Ри ¹ ^{s²} тоний	95 24 24 18 5f ⁷ 7s 2 Аме	Ат ² риций	2 25 25 25 25 25 26 247] 25 7 ⁷ 6d ¹ 2 Кюри	С т ⁷⁵² й	97 29 225 18 2 5 6 6	7] 6d ¹⁷ s ² эклий	98 26 26 18 5f ¹⁰ 2 Kan	Сf 1 7s ² ифорний	99 8 [252] 8 5f ¹¹ 7 8 Эйн	Еs 75 ² штейни	100 29 [257 32 5f ¹² й 2 Фер	р Т 7s ² омий	101 30 [260] 32 5/ ¹³ 7s ² 2 Менде	Md 28 2 32 левий 2	¹⁰² N ^[259] 5/ ¹⁴ 7s ² Нобелий	0 2 32 [26 32 5f ¹ 2 Ло	³ Lr ^{2]} ⁴ 6d ¹ 7s ² 18 уренсий а	•	••••		•••

Algorithm for determining the correction factor

There are two ways to calculate corrections:

- To calculate them independently in dependence on the sample thickness and take the integral
- To simulate the total thickness-integrated correction in the GEANT4 using a separate ones as weighting factors

Correction features:

- Multiple inelastic scattering overstates the number of emitted γ-rays
- Attenuation of incident neutrons and $\gamma\text{-rays}$ understates the number of emitted $\gamma\text{-rays}$

Simulation features:

- 2 stage neutron transport and γ-rays transport simulation
- The inelastic multiple scattering is used as a probability factor increasing the number of emitted γ-rays in comparison with its real number
- The inelastic multiple scattering correction calculates taking into account the energy dependence of emission cross section for specific γ-line taken from TALYS for each interaction point
- The correction factor resulted included thickness-integrated multiple scattering, absorption and efficiency coefficients

Simulation of the interaction point and neutron spectra depending on thickness

Calculation of the inelastic multiple scattering correction depending on the thickness

> Simulation of γ-rays detection efficiency emitting them from the interaction points

Example of the multiple scattering correction

Multiple scattering correction factor depending on the sample thickness. The example corresponding to the SiO_2 sample and first vertical strip

Integrated correction factors using the example of the SiO_2 sample

The correction factors including the attenuation correction, total efficiency and multiple inelastic scattering corresponding to the various $LaBr_3$ detectors

Small rotation of the NG could lead to dramatic change of target coverage. It could be corrected by relative calibration to central pixel and rotation angle could be adjusted to minimize CS difference between pix-det combinations with small difference in angle

Configuration for γ -quanta emission CS measurement

- 1-ING-27, 2-iron-, 3-lead parts of the collimator, 4sample, 5-HPGe crystal, 6case of the detector.
- Updated "HPGe" setup contains two ORTEC-made spectrometers with relative efficiency of 60%
- Set of LaBr detectors will be used to measure the γangular distribution

Measurement of *n'* angular distributions and n' y correlations

 1-ING-27 neutron generator, 2-sample, 3-PFT n-detector

a -direct and elastically scattered neutrons, *b*-4.4 MeV, *c*-7.6 MeV, *d*-9.6 MeV excited states, *e* -γ-quanta emitted from case of the ING-27, *f*- γ from sample

• 9.6+9.8+9.9 MeV states

- 7.6 MeV state (Hoyle state)
- Green line ENDF-B-VIII
- Red line TALYS