

Nuclear modification factor of inclusive charged particles in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV with the STAR experiment.

Alisher Aitbayev^{1,2} (for the STAR collaboration)

¹Joint Institute for Nuclear Research, Dubna - Russia, ²The Institute of Nuclear Physics, Almaty - Kazakhstan

June 7, 2025

-

Alisher Aitbayev	STAR collaboration	1 / 17

Phases of QCD Matter

Baryon Chemical Potential μ_{B}

QCD Phase Diagram

- Cross-over transition expected at low baryon chemical potential (μ_{β})
- First-order transition expected at high μ_B
- Critical point is the end point of the first order phase transition

✤ Beam Energy Scan (BES)

- Explore the QCD matter by colliding gold ions at different energies - and search for the potential QCD critical point
- Seeking to map onset of deconfinement, and the predicted QCD critical point

Image: A math and a

Э

na a

Heavy Ion Collisions

Different stages of relativistic neary ion collision. From left to right: (1) two Lorentz contracted nuclei right before the collision, (2) formation of dense, hydro dynamically expanding matter at around 1-2 fm/c after the collision, (3) hydrodynamic expansion of the dense core, surrounded by hadronic corona (the particles on the plot represent individual hadrons), (4) final state hadronic interactions and decoupling of the fireball. (Image from an animation by MADAI)

	OF I	2.22	0
AUST			154
		_	

3 / 17

na a

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

Comparison of statistics between *BES-I* (2010-2017) and *BES-II* (2019-2021)

4 / 17

R_{CP} of identified hadrons up to $p_T = 5 GeV/c$

Although the BES-I RCP results hint at the disappearance of the QGP signature, their certainty remains limited due to the constraints of 3-4 GeV/c for inclusive hadrons and 2-3 GeV/c for identified hadrons. The anticipated extension of pT capabilities in BES-II holds paramount importance in establishing unequivocal determinations regarding QGP formation at distinct collision energies. = nar

lisher Aitbayev	STAR collaboration	
-----------------	--------------------	--

p

P. (GeV/c)

7.7 GeV

11.5 GeV

19.6 GeV

STAR Preliminary

P. (GeV/c)

Solenoidal Tracker at RHIC (STAR)

- ★ Time Projection Chamber (TPC) Measures charged particle momentum with track curvature under B-field. Identifies particle with energy loss per unit length (dE/dx). TPC: |η| < 1</p>
- Detector Modernization (2018+) EPD: $2.1 < |\eta| < 5.1$ iTPC: $|\eta| < 1.5$ eTOF (2019+): $-1.6 < \eta < -1$

Image: A math a math

 \equiv

nan

Data sets for 27 GeV

Data set:

- ✤ System: Au + Au @ 27GeV (BES-II)
- ♥ Data were collected in 2018

Alisher Aitbayev	STAR collaboration	7	/ 1	7
------------------	--------------------	---	-----	---

Centrality definition

🛚 exclude Bad Run

define centrality

< A

< 3

🛚 define weight

Э

Spectra for central and peripheral centrality classes

11 / 17

Spectra for centrality classes

Alisher Aitbayev

3

Nuclear modification factor for 27 GeV

Spectra in URQMD model

Image: A = 1 + A = 2

Э

Nuclear modification factor in URQMD model

= 15 / 17

- 4

Э

na a

Conclusion

- ☑ Calculated nuclear modification factor at $\sqrt{S_{NN}} = 27 GeV$ under Beam Energy Scan II.
- Compared to results from the BES-I program, significant extension to the high p_T is achieved. This advancement facilitated a more precise depiction of the behavior of the nuclear modification factor.
- ✤ Notably, an increase in transverse momentum corresponds to the suppression of particles.

nan

Thank you!

		A ***	
4116	her	Althay	JOV
		ALDU	

17 / 17

<ロト < 回 ト < 臣 ト < 臣 ト 三 三 の < ()