

Optimization of the detector configuration for the new SRC experiment with a polarized deuteron beam

<u>Atovullaeva Asya,</u>

Patsyuk M., Atovullaev T.

Dubna 2025

Experimental Strategy for Probing SRCs

1. Compact deuteron = SRC

 ^{12}C

2. Tensor asymmetry^[1, 2]

$$A_{zz} = \frac{(\sigma_- + \sigma_+ - 2\sigma_0)}{\sigma_{unpol}}$$

allows to study:

- relativistic description of the bound system;
- final state interactions in the highmomentum region;
- non-nucleonic deuteron components in polarization measurements.

3. Quasi-free (p,2p) scattering

Experimental requirements 1. $P_{miss} = P_1 + P_2 - P_{beam} \rightarrow \text{reconstruct neutron}$ momentum (SRC signature). 2. $|\mathbf{t}|, |\mathbf{u}| > 1 \text{ GeV}^2 \rightarrow \text{hard, short-distance collision;}$ 3. $\theta_{cm} > 60^\circ \rightarrow \text{wide scatter (high Q}^2).$ 4. $20^\circ < \theta_{lab} < 45^\circ; |\phi_{lab}| < 20^\circ.$

2

Experimental setup

Software and research methods

Generator: Generalized Contact Formalism Simulations: Geant4 Reconstructions: CERN ROOT

What we vary:

- 1. Optimize the arm detector configuration and achieve the best Pmiss resolution
- 2. Consider neutron detector and find its optimal location in order to measure the neutron momentum
- 3. Optimize the arm angle and length to measure the SRCs

Arm detectors' resolution

4

Neutron detector position options

•Geom_1:

- ✓ the beam is deflected by the magnet.
- ✓ closer to the center of the beam.
- ✓ allows to measure more neutrons

•Geom_2:

- ✓ the beam isn't deflected by the magnet.
- ✓ Farther from the center of the beam.
- \checkmark less neutrons are detected

Geom1 vs Geom2

	cut	[cm]	total rate	%
	wo cut	_	461 109	100,00%
95 1	Det1cut	X < 0	231 718	50,25%
	Det2cut	X < -30	150 388	32,61%
	Det3cut	X < -60	85 400,8	18,52%

	cut	[cm]	total rate	%
7 m	wo cut	_	461 109	100,00%
	Det1cut	X < -20	117 023	25,38%
delector	Det2cut	X < -40	45 064	9,77%
	Det3cut	X < -60	12 406,3	2,69%

Target position

Rate_pt (neutrons)

- •Target Movement: Limited experimental zone, target moved back/forth to adjust arm length.
- •Neutron Rate: Neutron rate maximized with 0.5m downstream target shift.
- •Max Neutron Rate : observed at 19m distance.

	17 m	19.5 m	39.5 m
pos	Rate_pt	Rate_pt	Rate_pt
-1.5	376	399	189
-1	3 963	4 193	1 972
-0.5	25 897	29 993	22 314
0	65 155	77 749	62 248
0.5	98 637	122 163	105 711
1	64 956	83 883	76 715
1.5	22 649	30 316	31 051

Summary

- 1. Two-arm spectrometer (two coordinate planes and TOF detector):
 - Calculating the Pmiss resolution for the given coordinate (~100-500 um) and TOF (90 ps) resolutions, the largest smearing is from TOF resolution
 - Defined the optimal target position (arm angle and length) maximizing the number of SRC events
- 2. Optimized the position of the neutron detector for neutron momentum measurement

Future steps:

- Continue simulation work with beam momentum 4 GeV/c/u;
- Consider coordinate detectors (spatial resolution 100, 500, 1000 μ m) and assess resolution of Pmiss reconstruction;
- Optimization of generator's settings.

Experimental Strategy for Probing SRCs

2. Tensor asymmetry^[1, 2]

$$A_{zz} \sim \frac{\frac{1}{2}w^2(k) - u(k)w(k)\sqrt{2}}{u^2(k) + w^2(k)}$$

3. Quasi-free (p,2p) scattering

Short-range correlations with a polarized beam

•Fundamental Understanding: Deepen understanding of the strong force, which is one of the four fundamental forces of nature.

•Nuclear Structure: Provide essential information for constructing more accurate and predictive models of nuclei, nuclear matter, and neutron stars.

•Quark-Gluon Structure: Contribute to understanding how the properties of nucleons (like their spin) evolve as you probe smaller and smaller distances, where the underlying quark and gluon structure becomes important.