Si-MWPC tracking and momentum reconstruction for SRC-2022 experiment

Timur Atovullaev

10th June 2025 The XIV Annual Scientific Conference of Young Scientists and Specialists "Alushta-2025"

Where?

What?

SRC: n-p dominance

A. Tang et al., Phys. Rev. Letters (2003)E. Piasetzky et al., Phys. Rev. Letters (2006)R. Shneor et al., Phys. Rev. Letters (2007)R. Subedi et al., Science 320, 1476 (2008)

MF: ¹²C(*p*,2*p*)¹¹B SRC: ¹²C(*p*,2*p*)¹⁰B,¹⁰Be

Feeling sad and lonely? Become a nucleon! After all, 80% of nucleons are free and looking for their pair!

How?

45 GeV/c ¹²C beam momentum (3.7 GeV/c/nucleon)

Inverse kinematics:

✓ unstable nuclei

✓pmiss, pn

✓ p probe:

- ✓ larger cross-section
- ✓(compared to e-scattering)

✓ fragment ID + pA-2

Main goal: reactions cross section measurements and studying fragment properties

Breaking news: Atoms have started studying humans for the first time. It turns out that 99% of people can't pass through walls, but 1% can — by breaking them down.

Upstream tracks

Input:

- Si digits (clustered points in local coordinate system)

- MWPC3, 4 track segments (tracks combined in the chamber itself)

Output:

- UpStream Tracks (X, Y, Z, Tx, Ty)
- Coordinate resolution at target center ~1mm
- Angular resolution at target center ~0.6mrad
- Efficiency 83%

Detectors used for tracking: Si1-4, MWPC3,4

Momentum reconstruction with MDF

Step 1:

Simulation Input: Wide beam + wide momentum Unreacted nuclei Track before magnet Track after magnet Known momentum Track before Output: magnet: P/q (X₀, Y₀, Z₀, Tx₀, Ty₀, X₁, Y₁, Z₁, Tx₁, Ty₁) X₀, Y₀, Z₀, Tx₀, Ty₀ Tx_{before magnet} (X₀, Y₀, Z₀, Ty₀, X₁, Y₁, Z₁, Tx₁, Ty₁) Step 2: Momentum reconstruction Input: Track before magnet Track after magnet Matching conditions (ΔTx , ΔTy) — A cat. Output: P/q

Track after magnet: X₁, Y₁, Z₁, Tx₁, Ty₁

СП-41

- What's in the black box?
- And what state is it in?
- Hopefully not in the ground! 6

Heavy-fragment identification

```
MF: <sup>12</sup>C(p,2p) <sup>11</sup>B
SRC: <sup>12</sup>C(p,2p) <sup>10</sup>B,<sup>10</sup>Be
```


4.9 σ

Conclusion and summary

- Tracking berofe magnet
- Fragment momentum reconstruction

Current analysis status:

Nucleon momentum before interaction = Fragment momentum + + Protons momentum in arms – Target momentum

The cat escaped from the box, adding some text to my presentation; apparently, it was in an excited state

Thank you for attention!

SRC in direct kinematics

SRC in inverse kinematics

BackUp

Геометрическое выравнивание кремниевых детекторов.

Положение стрипов в Si-сенсорах модуля (SRC-2021).

Активация Win

Для каждой станции восстанавливаются X и Y координаты, образующие хиты.

Inverse kinematics:
✓ unstable nuclei
✓ pmiss, pn
✓ p probe:
✓ larger cross-section
✓ (compared to e-scattering)
✓ fragment ID + pA-2

HyperNIS

2018 – 1st SRC experiment at BM@N

2022 – 2nd SRC experiment at BM@N

The next experiments are planned at HyperNIS

.