The downstream CSC data in the 2022 SRC run

Mădălina Mihaela Miloi miloi@jinr.ru

Joint Institute for Nuclear Research - Veksler and Baldin Laboratory of High Energy Physics

10 June 2025

- 1. What is SRC and work motivation
- 2. 2022 SRC run at BM@N

3. The downstream CSC data - tracking of the forward products

What is SRC - short range correlations

SRC - short range correlations

- nucleons that have relative momenta higher than Fermi level ($k_F \sim 250 \text{ MeV/c}$), which are balanced by each other
- temporary (~ fs) strong interactions between nucleons, pairing at distances comparable to their radii (exceptionally close to each other)
- ${\sim}80\%$ of kinetic energy of heavy nuclei is within SRC

For what SRC

• understanding nuclear structure, nucleon structure, behavior of multiparticle systems, dense drops of nuclear matter (neutron stars), details of the strong interaction

Short-ranged, short-lived, highly correlated pairs of nucleons

High relative and lower center-of-mass momentum

 $k_1 > k_F$, $k_2 > k_F$, $k_1 \simeq k_2$

dense configuratios of nucleons

SRC at BM@N 2022 - Physics motivation

Carbon beams on H target

- Quasi-elastic knockout of nucleons, at maximum momentum and energy transfer
- 2. interaction with SRC rare

The dominant SRC pair, pn:

Inverse kinematics:

- available by p-A
- advantage in studying the residual nucleus
- advantage in studying the SRC pair, the "missing" particle

Proton-nuclear interactions:

- larger p-nucleon x-section compared to *e*⁻ scattering
- QE p-p scattering has a very strong preference for reacting with high-momentum nuclear protons
- 2018 run \rightarrow Suppress re-scattering (11B) 4/22

SRC at BM@N - the experimental technique

Setup

4 Gev/c/u $^{12}\mathit{C}$ on LH2 target

- in the chosen kinematical conditions, the interactions with SRC have an increased probability
- detection of the scattered and knocked-out protons in the TAS (two arm spectrometer)
- detection of the residual nucleus
- detection of the recoil particle (SRC partner)

Steps in the CSC data analysis

Input: events with heavy fragments that have:

- 2 reconstructed protons (scattered and knocked-out) in TAS
- reconstructed vertex
- reconstructed tracks upstream and downstream of the magnet
- identified and reconstructed heavy fragment

To be done:

- 1. identification of the CSC hits for each event
- 2. selection of the proton candidates \rightarrow SRC "missing"/forward partner
- 3. analyzing the "missing" protons

Few tens of SRC p-p events are expected

Setup

The downstream CSC

- shifted 43 cm from the beam direction in order to identify protons (primary goal) and heavy fragments
- high resolution tracker
- main purpose in this work: looking for the recoil proton from 10 Be reaction (p-p SRC pair)

Occupancy: all registered hits by CSC

CSC data from the selected events

10B

11**B**

CSC multiplicity		CSC multiplicity	
1	11.17%	>4	0.15%
2	3.6%	>5	0.06%
3	0.74%	>10	0.001%
4	0.22%	>20	0%

The expected hit position for protons is \sim 60 cm and for the heavy fragments \sim 25-30 cm. The noise is too large to identify protons.

10Be

Tracking - assigning CSC hits to the reconstructed tracks

With the tracks **upstream the magnet:**

- shift $\sim 1 \text{ cm}$ recorded-extrapolated (correlation with the closest hit)
- a clear correlation exists, with $\sigma_{\it residuals} \simeq$ 0.56 cm

For the mixed events $\sigma_{mixed} > 10 \times \sigma_{residuals}$ 9/22

Tracking - assigning CSC hits to the reconstructed tracks

With tracks **downstream the magnet**, from DCH:

A correlation between hits and extrapolated DCH tracks exists, with $\sigma_{XYresiduals} \simeq 0.24$ cm

Mixed events with multiplicity = 1

 $\sigma_{mixed} \sim 35 \sigma_{residuals}$

A clear correlation between the CSC hits and the reconstructed upstream and downstream track can be done.

Status of the current work

- the "missing" forward protons are not easy to be identified, due to a high background
- the 2022 data allows to "calculate" the missing protons, from information in TAS and beam

 \rightarrow the following approach to identify the proton tracks is proposed:

the momentum of the "missing"

proton: $p_{miss_exclusive} =$

 $p_{12C} + p_{tg} - p_1 - p_2 - p_{frag}$

 confirmation if in CSC there is a hit near the expected proton position

...to be continued 11/22

Science brings nations together

Back-up slides \downarrow

Matching evens in BMN tree with events in CSC (same run number, same event id)

```
ch_CSC.BuildIndex("RunId","EventId");
```

auto cscTreeIndex = ch_CSC.GetEntryNumberWithIndex (RunId, EventId);

• "Note that this function returns only the entry number, not the data [...] If it finds a pair that matches val, it returns directly the index in the table, otherwise it returns -1. "¹

Selection of events: with heavy fragments beta cut in arms: 0.8 < BetaLeft \leq 0.98 0.8 < BetaRight \leq 0.98 — percentage of accepted synchronized events: 15.89 % and CSC multiplicity <5 (additional 0.15% events eliminated)

¹URL: https://root.cern.ch/doc/master/classTTree.html# a1f2ca54aa34f1b64a0bb69ccc0e6c9f8.

Expected hit position in CSC for fragments

 $p=3.7 \,\, \text{GeV}/\text{c}/\text{u}$

 $\int_0^L B_y dz = 2.63 Tm$ total field integral $\rightarrow \theta_{tot} = 0.21 \frac{Z}{A}$

fragment	deflection ($^{\circ}$)	X in CSC
р	12.22	62.14
¹² C	6.11	31.43
¹⁰ C	7.33	37.61
¹⁰ ₄ Be	4.9	25.22
$^{10}_{5}B$	6.11	31.43
$^{11}_{5}B$	5.56	28.61

* if the fragment is produced along the beam direction

Y hit position: recorded and extrapolated - all selected events

Y in CSC vs Y in FragSiMwpc: Fitted by Gauss:

track/hit	mean	sigma
Be10 extr	$\textbf{-0.35}\pm0.1$	4.29 ± 0.07
Be10 recorded	-1.57 ± 0.1	4.82 ± 0.1
B10 extr	0.17 ± 0.04	4.21 ± 0.03
B10 recorded	$\textbf{-0.96}\pm0.04$	4.61 ± 0.04
B11 extr	0.05 ± 0.02	3.3 ± 0.02
B11 recorded	$\textbf{-1.16}\pm0.02$	3.55 ± 0.02

All hits in the selected events:

- smaller σ for bigger A, Z
- the recorded hits spread larger than the extrapolated tracks
- shift $\sim 1 \text{ cm rec-extr}_{_{15/22}}$

Y in CSC vs Y in FragSiMwpc Tracks with residuals outside mean \pm 3 σ are excluded

The distribution is not a perfect Gaussian - it may be a sum of many, but what the resolution can depend on?

the shift from 0 may be due to the not-perfect perpendicular magnetic field or alignment and in situ detectors position measurement and resolution of fitted tracks, resolution in CSC;

Conclusion: a clear correlation exists, with $\sigma\simeq$ 0.55 cm

Selected: only events with multiplicity = 1 For events inside $\pm 3\sigma$ (according to Simpwc assignement), $\sigma = 10 \times \sigma_{residuals}$:

Dch-CSC residuals inside 3 σ

- correspondence by minimum XY (between CSC hit and DCH extrapolation to CSC) inside 3σ
- 14.63 % of tracks are outside 3σ
- a correlation between hits and extrapolated DCH tracks exists, with $\sigma\simeq$ 0.24 cm
- shift on both X of 2 cm and Y of 1 cm -- > non perfect magnetic field / non perfect in situ alignment ? both upstream and downstream tracks show a shift in Y

position in CSC vs extrapolated DCH

19 / 22

Mixed events - DCH

events with multiplicity = 1, inside 3 σ σ \sim 35 $\sigma_{\it residuals}$

Status of the SRC at JINR

2018 run at BM@N: ${}^{12}C(p, 2p){}^{11}B$

- the first experiment on SRC in inverse kinematics
- detection of 11B: scattering on a "transparent" carbon nucleus
- 25 events (23 np + 2pp) confirmed the SRC properties known from e^- experiments

Status of the 2022 run 45 GeV/c 12C

- Main goal: reactions cross sections and fragmentation properties for single nucleon knockout and SRC pairs, ground-state proton momentum distributions with fragment tagging (suppress ISI/FSI, rescattering)
- SRC: Improved statistics, detect recoil SRC-pairs n/p ratios, multi-fragment reconstruction, fragment distribution
- Finish analyzing the full 2022 set of data

future run - 2026?

- will be in HyperNis area
- will use tensor-polarized deuteron beam for

SRC cut

if(VertexZ > -576.2+cut || VertexZ < -576.2-cut) continue; if(BetaLeft<0.8 || BetaLeft>0.98 || BetaRight<0.8 || BetaRight>0.98) continue;

if(Mdf_Fragment[0]== 511) continue;

if(pow(VertexX-1,2) + pow(VertexY,2) >= 3*3) continue; //beam

if(Pmiss<=0.350) continue;

if(ThetaOpening<=63) continue;</pre>

```
if(Mdf_Tracks!=1) continue;
```

```
if(Mdf_Fragment[0]==510) {your work}
if(Mdf_Fragment[0]==410) {your work}
```