

Exploring Nuclear Clusters Through Relativistic Nucleus Fragmentation

N. Marimuthu

(BECQUEREL Experiment)

Joint Institute for Nuclear Research, Dubna, Russia.

XIV Annual Scientific Conference of Young Scientists and Specialists "Alushta-2025"

June 08-15, 2025

Outline

1 Nuclear Clusters

- **2** BECQUEREL Experiment
- **3** α -Fragmentation of Relativistic Nuclei
- Exposure of NTE to Relativistic Muons
- **(5)** Observation of Projectile Neutrons

6 Summary

Nuclear Clusters

 \Box The structure of light nuclei, characterized by spin-paired proton and neutron quartets, leads to the prominent formation of α particles in various nuclear reactions and decays.

BECQUEREL Experiment

BECQUEREL Experiment

- ▶ Nuclear Track Emulsion (NTE) method is used in the BECQUEREL experiment at the JINR Nuclearon to study fragmentation of light stable nuclei and including radioactive nuclei.
- ▶ The features of the nuclei ^{7,9}Be, ^{8,10,11}B, ^{10,11,12}C and ^{12,14}N appeared in the probabilities of their dissociation channels. In dissociation of isotopes ¹⁰B, ¹⁰C, and ¹¹C, decays ⁹B \rightarrow ⁸Be are identified.

Marimuthu (JINR)

BECQUEREL Experiment

Nuclear Track Emulsion

Hair - 60 μm AgBr Crystal - 0.2 μm Atom - 10⁻⁴ μm Proton - 10⁻⁹ μm

Marimuthu (JINR)

Alushta-2025

June 10, 2025

4/19

 $\alpha\mbox{-}{\rm Fragmentation}$ of Relativistic Nuclei

α -fragmentation of relativistic nuclei

✦ Electronic experiments in this field encounter fundamental limitations: the quadratic dependence of ionization on nuclear charge, the ultra-narrow angular divergence of relativistic fragments, and their frequent magnetic rigidity overlap with beam nuclei. Thus, the NTE method remains unparalleled for studying relativistic fragmentation.

◆ In the nuclear emulsion, relativistic nuclei, even the heaviest ones, can fragment into nucleons and nucleon clusters, such as H and He isotopes $(^{1,2,3}$ H and 3,4 He), as well as relativistic neutrons. NTE enables the study of such ensembles with record angular resolution and identification of He and H isotopes.

Marimuthu (JINR)

Energy of a few-particle system

$$\mathbf{Q} = \mathbf{M}^* - \mathbf{M}$$

 $M^{*2} = \sum (P_j)^2 = \sum (P_i \cdot P_k)$, is the invariant mass defined by the sum of all products of 4-momenta $P_{i,k}$ fragments.

$$Q_{3\alpha} = \sqrt{\sum_{i \neq j} E_{\alpha_i} E_{\alpha_j} - P_{\alpha_i} P_{\alpha_j} \cos \theta_{2\alpha}} - 3m_\alpha$$

α -Fragmentation of Relativistic Nuclei

Marimuthu (JINR)

Alushta-2025

June 10, 2025

Selected under the cleanest conditions, the criterion $Q_2\alpha(^8\text{Be}) < 0.2$ MeV includes the accepted approximations, the kinematic ellipse of the ⁸Be decay, and the resolution of angular measurements. Its application allows us to determine the ⁸Be contribution to the statistics of "white" stars equal to $45 \pm 4\%$ for $^{12}\text{C} \rightarrow 3\alpha$ and $62 \pm 3\%$ for $^{16}\text{O} \rightarrow 4\alpha$

 α -Fragmentation of Relativistic Nuclei

The Hoyle state of ${}^{12}C$

The Hoyle state (HS) is the second excited state of the ¹²C nucleus, located at an excitation energy of 378 keV above the 3α threshold. Its lifetime, τ (HS) = 9.3 \pm 0.9 eV, corresponds in magnitude to the decay width of the $\pi^0 \rightarrow 2\gamma$ process.

Kirsebom, The Secret of Life, Physics World, 2013

 α -Fragmentation of Relativistic Nuclei

Distribution of the number of 3α -triples $N_{3\alpha}$ over the invariant mass $Q_{3\alpha}$ of 316 "white" stars ¹²C $\rightarrow 3\alpha$ (solid) and 641 "white" stars ¹⁶O $\rightarrow 4\alpha$ (dashed) at 3.65 A GeV.

Recently, an increase in the probability of detecting ⁸Be in an event with an increase in the number of relativistic α -particles was found, based on the statistics of dozens of ⁸Be decays. This suggests that the contributions of ⁹B and HS decays also increase. The exotically large sizes and lifetimes of ⁸Be and HS allow us to suggest the possibility of synthesizing α -particle Bose-Einstein condensate (α BEC) by successively connecting the emerging α -particles.

Marimuthu (JINR)

Exposure of NTE to Relativistic Muons

Exposure of NTE to Relativistic Muons

- \square NTE samples were transversely exposed to relativistic muons at 160 GeV.
- □ This study explores nuclear fragmentation induced by relativistic muons, focusing on the identification of short-range alpha-particle tracks resulting from the reaction $\mu + {}^{12}C \rightarrow \mu' + 3\alpha$.
- □ SRIM simulations enabled precise energy loss and kinetic energy reconstructions, while track geometry analysis provided emission angles and invariant mass spectra.

Marimuthu (JINR)

Alushta-2025

June 10, 2025

Alpha-particles ranges and emission angles were determined from track coordinate measurements, revealing a mean range of $26.78 \pm 0.67 \ \mu m$ (RMS = 7.7 μm); energy was estimated using the SRIM model, with a mean value of 5.2 ± 0.09 MeV (RMS = 1.03 MeV).

Observation of Projectile Neutrons

Observation of Projectile Neutrons

Marimuthu (JINR)

Alushta-2025

16/19

Observation of Projectile Neutrons

Marimuthu (JINR)

Observation of Projectile Neutrons

Marimuthu (JINR)

Alushta-2025

June 10, 2025

Summary

Summary

- □ Nuclear emulsion provides the high spatial resolution, completeness, and uniformity necessary for investigating α -particle Bose-Einstein condensation (α BEC). The identification of key decay channels-⁸Be $\rightarrow 2\alpha$, ⁹Be $\rightarrow 2\alpha$, and ¹²C(0⁺₂) \rightarrow ⁸Be+ α (Hoyle state) was performed through invariant mass analysis of light nuclei, including radioactive isotopes.
- □ Muon-induced alpha-particle ranges and emission angles were determined from track coordinate measurements, with energies estimated using the SRIM model. Future work will focus on calculating the reaction cross section for ¹²C-µ interactions, which are important for analyzing natural gas fields. While helium is typically associated with U/Th decay, it can also result from muon-induced reactions with ¹²C. Accurate cross-section data will enable better estimates of gas field age and volume.
- □ The group has recently identified a trend of increasing production of ⁸Be, ⁹B, and ¹²C(0₂⁺) with a growing number of α -particles in medium and heavy nuclei, suggesting the potential formation of a 4 α Bose-Einstein condensate (BEC).

Thank you for your time !

