
Methods of electron cooling friction force 
measurement suitable for NICA Booster 

synchrotron

Daniil K. Chumakov

NICA Dispatch Service, LHEP JINR/Диспетчерская служба NICA ЛФВЭ ОИЯИ

National Research Tomsk Polytechnic University

AYSS-2025

Alushta, Russia



Why do we need cooling

[1] NICA Booster: a new-generation superconducting synchrotron. DOI: 10.3367/UFNe.2021.12.039138 

[2] Acceleration in Booster and Nuclotron, V. Lebedev, September, 2023

• Intensity of beam is crucial for colliders at each stage;

• NICA Booster is the first stage after linac;

• Tasks of NICA Booster [1]:

- Accumulate ions (up to 10x);

- Form required phase volume of beam;
- Accelerate intense beam to 578 MeV/nucleon;

- Strip accelerated particles to bare nuclei on stripping foil.

Scheme of repeated single-lap injection [2]

• Beam fills in available phase space; 

• No accumulation using only magnetic optics – we need dissipative force;

• Cooling exploits such forces, reduces volume of beam in phase space;

• Injection → Cooling→Phase space reduced →Repeat; 

• Circulating beam accumulates until diffusion power exceeds cooling power
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Idea of electron cooling

Effective method of particle oscillations damping 

in proton and antiproton rings // Atomnaya

energiya. 1967, 22, pp. 346-348

[3] Beam Cooling. M. Steck. CAS Advanced Acc. Phys., London, 2017

Scheme of ions cooling process with 

electron beam [3]

• Proposed by G.I. Budker in 1966;

• Equal mean velocities of ion and 

electron beams;

• Two beams move together;

• Beam temperatures: 𝑘𝐵𝑇∥,⊥ = 𝑚 𝑣∥,⊥
2
;

• ⟨𝑣⟩ is RMS velocity.

• Electron beam by design has lower 𝑇;

• We move to beam rest frame →

• Analogy: particle loses extra energy in foil;

• “Foil” is electron beam:

- Slow ion in lab frame gains momentum;

- Fast ion in lab frame loses momentum;

- In both cases – resulting momentum is closer to mean
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NICA Booster electron cooling system

[4] Commisioning of electron cooling system of NICA Booster. doi: 10.18429/JACoW-RUPAC2018-TUPSA22

[5] First Experiments on Electron Cooling of Ion Beam in the NICA Booster. doi: 10.1134/S1547477124700122

Top: NICA Booster electron cooler after 

installation [4]

Down: NICA Booster electron cooler 

scheme: 1 – electron gun, 2 – electron 

collector, 3 – electric field plates in 

electron beam turning section, 4 –

longitudinal magnetic field solenoids, 5 –

ion beam cooling section [5]
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• Developed by BINP (Novosibirsk, Russia);

• Designed to cool ions at injection energy (3.2 MeV/nucleon) 

and at energies up to 90 MeV/nucleon;

• Electron beam diameter 28 mm;

• Cooling section length 2.5 m;

• Practical parameters at ion energy 3.2 MeV/nucleon:

- Electron energy 1.856 keV;
- Electron current 25 ÷50 mA;

- Magnetic field 0.075 ÷ 0.1 T;

• Temperatures of electron beam (in eV scale):

‐ 𝑇⊥ = 0.12 eV only due to cathode temperature;

‐ 𝑇∥ = 8.28 ⋅ 10−5 eV due to acceleration and beam density;



NICA Booster beam diagnostics

[5] First Experiments on Electron Cooling of Ion Beam in the NICA Booster. doi: 10.1134/S1547477124700122

[6] Beam diagnositcs at NICA injection complex. E.Gorbachev et al. RuPAC23

Fast current transformer (FCT): (2), 

(4)

IPM or Ionization profilometer (X,Y, 32 channels 

per direction): (3), (4)

Schottky spectrometer (2), (3)

E-Cooling system BPMs: (1)

Experimental tasks: 

1) Electron and ion beam alignment;

2) Longitudinal cooling control (force, time);

3) Transverse cooling control (force, time);

4) Beam accumulation and lifetime control.

24 beam position monitors

(BPMs): (1), (3)

Parametric current transformer: (4)

Why measure cooling force/cooling time?

Fokker-Planck equation: evolution of beam particle distribution

Position of electron and 

ion beams at start and 

end of cooling section
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Theoretical models of friction force
Dissipative force dependent on relative velocity 𝑭(𝒖) = 𝑭(𝒗𝒊 − 𝒗𝒆);

Maximum force at |𝒖| = 𝑣𝑒∥,⊥ from 𝑘𝐵𝑇𝑒∥,⊥ = 𝑚 𝑣𝑒∥,⊥
2
; 

• Electrons distribution at source: symmetric Maxwell distribution;

• After acceleration: highly anisotropic Maxwell distribution with 𝑇∥ ≪ 𝑇⊥;

• Magnetic field of solenoid changes electron-ion kinematics [9]

• … suppresses ⊥ degree of freedom for electrons at 𝑏 > 𝑏𝐿𝑎𝑟𝑚
• At 𝑏 > 𝑏𝐿𝑎𝑟𝑚 collisions are adiabatic w.r.t. Larmor gyration

Derives from binary Coulomb collisions [7] & collective effects [8] in 

plasma.

𝐿𝐶 is Coulomb logarithm that limits impact parameters
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𝑭 𝒖 = −
𝑍2𝑒4𝑛𝑒

4𝜋𝜀0 ⋅ 𝜀0 ⋅ 𝑚𝑒
න𝐿𝐶 𝒖 ⋅ 𝑓 𝒗𝒆

𝒖

𝒖 3
𝑑3𝑣𝑒

𝑏𝑚𝑖𝑛

𝑏𝑚𝑎𝑥 𝑑𝑏

𝑏
= 𝐿𝐶 = ln

𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

Electron cooling force for 124Xe26+ ions for 

Booster parameters at 3.2 MeV/nucleon.

Electron beam temperatures are on Slide 3.

[7] Development of ion cooling methods. I.N. Meshkov 10.3367/UFNr.2018.01.038297

[8] Electron cooling. A. Sorensen et al. doi: 10.1016/0167-5087(83)91288-7

[9] The limits of electron cooling. N.S. Dikanskii. et al. Preprint 88-61, BINP



Low 𝑢 High 𝑢High 𝑢

Longitudinal force measurement methods

Two regions of 𝐹(𝑢): linear (low 𝑢) and non-linear (high 𝑢)

Dynamic methods are for non-linear region

Static methods are for linear region

Longitudinal force 

measurement

Static Dynamic

Energy jump

RF phase 

shift

Stochastic 

heating

Induction 

accelerator
Barrier RF

• Dynamic methods – evolution of value 

after single impact

• Static methods – continuous impact, 

comparison of values
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Longitudinal force: energy jump

Only coasting & pre-cooled beam

• Fast change of electrons energy

• Electrons shift energy of ions to 

equilibrium

• Energy change ↔ revolution frequency 

change

• Measure Δ𝑓 𝑡 with Schottky 

spectrometer

𝐹∥ 𝑡 =
d𝑝 𝑡

d𝑡

𝐹∥ 𝑡 = 𝛾𝐴
𝐸0
𝑐2

1

ℎ𝜂

𝐶𝑎𝑐𝑐
2

𝐿𝑐𝑜𝑜𝑙

𝑑𝑓 𝑡

𝑑𝑡

𝑢 𝑡 = 𝛽𝑐
Δ𝑝

𝑝
=
𝐶𝑎𝑐𝑐
𝜂

Δ𝑓 𝑡

ℎ
;

• Works well only for Δ𝑣𝑒 > 104 m/s
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change in energy420.312 MHz

420.427 MHz

Spectrogram of Schottky noise for coasting beam 

of 124Xe26+ at 36.7 MeV/nucleon. The signal 

frequency is shifted with heterodyne.

Δ𝑓 𝑡 = 𝑓 𝑡 − 𝑓0

𝐹∥(𝑢)

[10] Experimental studies of the magnetized friction force. DOI: 10.1103/PHYSREVE.73.066503

[11] Electron cooling at CRYRING with an expanded electron beam. DOI:  10.1016/S0168-9002(97)00249-0

[12] Longitudinal electron cooling experiments at HIRFL-CSRe. DOI: 10.1016/j.nima.2015.10.095

[13] Effects of a nonlinear damping force in synchrotrons with electron cooling. DOI: 10.1103/PhysRevE.51.4947

Formulae for cooling force evaluation are 

from [10-12]

𝐶𝑎𝑐𝑐 - accelerator circumference, 𝐿𝑐𝑜𝑜𝑙 -

cooling section length, ℎ - chosen revolution 

frequency harmonic, 𝜂 – phase slip factor, 

𝐸0 = 938 MeV

Let 𝐸𝑒0=19993 eV ↔ 𝐸𝑖0=36.7 MeV/n

𝐸𝑒1=20004 eV↔ 𝐸𝑖1=36.72 MeV/n

Δ𝐸𝑒 =11 eV ↔ Δ𝑢 = 𝑢1 − 𝑢0 = 2.1 ⋅ 104 m/s
Cooling force 𝐹 𝛿 , 𝛿 = 𝛿𝑝/𝑝0 for 

a) aligned mean 𝑣𝑒 and 𝑣𝑖
b) 𝑣𝑒 shifted w.r.t. 𝑣𝑖 [13]



Longitudinal force: linear region
RF phase shift Stochastic heating

• Bunched beam

• RF cavity 𝑓 change → synchrotron oscillations

•
𝑑𝐸

𝑑𝑡
|𝑅𝐹 = −

𝑑𝐸

𝑑𝑡
|𝑐𝑜𝑜𝑙

• Synchronous phase is shifted by Δ𝜙𝑠
• Δ𝜙𝑠 measured by FCT or phase discriminator

• Before bifurcation point: oscillations damping

• After – oscillations amplification

Fokker-Planck equation: 
𝜕Ψ

𝜕𝑡
=

𝜕

𝜕𝑣
−𝐹 𝑣 Ψ 𝑣 + 𝐷

𝜕Ψ

𝜕𝑣

Diffusion power: from fit [14] or 𝐷𝐸 =
𝑓0
2𝑞2𝑒2

2
𝐺2𝐸2

𝑑𝑃𝑠𝑟𝑐

𝑑𝑓
𝑍𝑒𝑥 [15]
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[13] Effects of a nonlinear damping force in synchrotrons with electron cooling. DOI: 10.1103/PhysRevE.51.4947

[14] Electron cooling forces for highly charged ions in the ESR. DOI: 10.1016/S0168-9002(97)00027-2

[15] Further results and evaluation of electron cooling experiments at LEAR. DOI: 10.1016/0168-9002(90)91818-V

Cartoon cooling force with blue lines as 
bifurcation points at 𝒖 = 0.97⟨𝑣𝑒∥⟩ [13]

𝐹∥ =
𝑍𝑒𝑈𝑟𝑓 sin Δ𝜙𝑠

𝐿𝑐𝑜𝑜𝑙
𝑢 𝑡 =

𝐶𝑎𝑐𝑐
𝜂

Δ𝑓 𝑡

ℎ
;

Hopf

bifurcation

• Coasting beam, pre-cooled;

• RF noise on RF gap at 𝑓 = ℎ𝑓0 with controlled power;

• Cooling switched on – equilibrium reached;

• Schottky spectrometer measures equilibrium distribution for 

each case.

Left: heating fit;

Right: equilibrium 

distributions for 

cooled; heated; 

heated+cooled

beam

At equilibrium: 𝐹∥ 𝑣 = 𝐷
𝜕 ΤΨ 𝜕𝑣

Ψ 𝑣
∝ 𝐷𝐸

𝜕Ψ Τ𝑓 𝑣 𝜕𝑓

Ψ 𝑓 𝑣



Longitudinal force: linear region - 2
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Induction accelerator Barrier buckets

[16] An induction accelerator for the Heidelberg test storage ring TSR. DOI: 10.1016/0168-9002(92)90230-2

[17] New method to measure the friction force of electron coolers in heavy-ion storage rings. DOI: 10.1016/S0168-9002(02)02142-3

• Coasting beam

• Constant acceleration to counterbalance cooling 

force power [16];

• Similar to energy jump method, but 𝐸𝑖𝑜𝑛 changes;

• Total force 𝐹𝑐𝑜𝑜𝑙 + 𝐹𝑖𝑛𝑑 shifts stable point 𝐹 = 0;

• 𝐹𝑖𝑛𝑑 is well known; find new stable point.

• Measure Δ𝑓 𝑡 with Schottky spectrometer.

Force acting on ion without 𝐹𝑖𝑛𝑑 (a)

and with 𝐹𝑖𝑛𝑑 (b), stable point is shifted

• RF barrier buckets with slope 

instead of IndAc [17];

• Change slope of 𝑈 or bunching

frequency 𝑓𝑅𝐹;

• 𝐹𝐵𝐵 = −𝐹𝑐𝑜𝑜𝑙;

• 𝐹𝐵𝐵 = −
ℎ𝑙𝑒𝑓𝑓

𝜌𝐶𝑎𝑐𝑐
2 𝑒Δ𝑈;

• Control with FCT, BPM (intensity 

mode), Schottky spectrometer.

Form of barrier buckets potential energy 

(a) and corresponding force (b) [17]

Beam signal from BPM for:

a) 𝐹𝐵𝐵 < 𝐹𝑐𝑜𝑜𝑙 ; b) 𝐹𝐵𝐵 > 𝐹𝑐𝑜𝑜𝑙 ; 
c) 𝐹𝐵𝐵 = 𝐹𝑐𝑜𝑜𝑙 [17]



Transverse force measurement methods
• Monitor betatron oscillations damping time with BPM & 

transverse Schottky spectrometer;

• Measure beam size with ionization profilometer.

• Right after injection:

‒ high 𝑑𝑝/𝑝, 

‒ fast decoherence due to chromaticity

• Suppress chromaticity to 0

• Pre-cool the beam to get small 𝑑𝑝/𝑝

• Excite the oscillations with kicker

• Dominant damping due to cooling, not chromaticity!

• 𝑢 ∝ amplitude of kick

Transverse force measurement
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Kick the beam

Fokker-

Planck 

solution

Suppress chromaticity

Decrease dp/p (precooling)

Low 𝑢⊥ High 𝑢⊥

Betatron

oscillations 

damping

X

V

х

x’ Beam center-of-mass right after kick

… and after some turns due to 

chromaticity [18]

Cooling shifts to 

center, not smears

[18] Transverse force measurement. A. Sidorin, NICA operators meeting



Transverse force measurement methods - 2
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• Stronger kick gives larger 𝑢⊥ from 𝑣𝑖⊥ ≡ ሶ𝑥 = ሶ𝑥0 cos 𝜃;

• Kicked pencil beam: an oscillator with external force 𝐹⊥(𝑢);

• Oscillator energy change: Δ𝐸 = 0
2𝜋
𝐹⊥ ሶ𝑥 − 𝛿 ሶ𝑥 cos 𝜃 𝑑𝜃;

• Change the angle of electron beam – change 𝑣𝑒⊥ ≡ 𝛿 ሶ𝑥;

• Hopf bifurcation point can be observed:

‐ on IPM: two-sided beam profile (see right pic. on this slide)

‐ on Schottky spectrometer: increase in signal power

• Before bifurcation oscillations are damped, Δ𝐸 < 0
• After bifurcation oscillations are amplified, Δ𝐸 > 0

• Measure damping time;

• Force can be extracted from Δ𝐸 or from Fokker-Planck solution

Left - profile of cooled ion beam with 

aligned electron beam;

Right – with misaligned electron beam 

after bifurcation point [19]

[19] Studies of electron cooling with a highly expanded electron beam. DOI: 10.1016/S0168-9002(99)01121-3



Outline
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• Short cooling time is good for accumulation of beam;

• BUT: avoid overcooling → growth of instabilities, loss of beam;

• NICA Booster Schottky spectrometer is suitable for 𝑬𝒊𝒐𝒏 > 30 MeV/n (sensitivity);

• For injection energy (3.2 MeV/n) – FCT is the only choice;

• For transverse cooling – ionization profilometer monitor (IPM) is OK for all cases;

• You need to know Twiss 𝜷 at IPM and in electron cooling section;

• The easiest methods for ∥ force measurement – RF shift + energy jump;

• In principle, Booster RF system allows barrier buckets after additional works [20];

• For IndAc-like measurements one need finer amplitude tuning on RF cavity;

• Try ⊥ cooling after chromaticity correction, injection optimization;

• Instrumentation allows presented methods

• … and tuning of electron cooling system for needs of beam accumulation

[20] Private communication with A.Volodin, LHEP JINR



Summary on measurement methods

Transverse force measurement
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Longitudinal force measurement

Static Dynamic

Energy jump
RF phase shift

Stochastic 

heating

Induction 

accelerator

Barrier RF

Low 𝑢∥ High 𝑢∥

Kick the beam

Betatron

oscillations 

damping

Fokker-Planck 

solution

Suppress 

chromaticity

Decrease dp/p

Low 𝑢⊥ High 𝑢⊥



Extra info
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Cartoon representing ranges of force to be 

measured with energy jump method

Mechanism of ion bunching in barrier bucket 

methods for misaligned and well-aligned force 

[17,21].

BPM signal is fitted with Boltzmann distribution with

barrier bucket potential

[21] Laser cooling of fast stored ion beams to extreme phase-space densities. Dissertation of Udo Eisenbarth, 2001


