
SPD Online Filter
High-Throughput Processing Middleware

Nikita Greben

Meshcheryakov Laboratory of Information Technologies

SPD experiment at NICA collider

Detector
Polarized proton and deuteron beams.
Collision energy up to 27 GeV.
Luminosity up to 1032 cm−2 s−1.
Bunch crossing every 80 ns = crossing rate
12.5 MHz.

Key Challenges
Number of registration channels in SPD ≈
500000.
Physics signal selection requires momentum
and vertex reconstruction → no simple
trigger is possible.
The goal of the online filter is to reduce the
data stream so that the annual increase in
data, including modeled samples, does not
exceed 10 PB.

Рис. 1: Expected event size and event rate of the SPD setup
after the online filter, compared with some other experiments.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 2 / 35

SPD DAQ

Triggerless DAQ
Triggerless DAQ means that the output of
the system is not a set of raw events, but a
set of signals from sub-detectors organized
into time slices.

DAQ provide data organized in time
frames which placed in files with
reasonable size (a few GB).
Each of these file may be processed
independently as a part of top-level
workflow chain.
No needs to exchange of any
information during handling of each
initial file, but results of may be used
as input for next step of processing.

Рис. 2: Triggerless dataflow in SPD

Nikita Greben Meshcheryakov Laboratory of Information Technologies 3 / 35

SPD Online Filter
SPD Online Filter is a primary data processing facility designed for the high-throughput,
multi-step processing of data from the SPD detector.

Hardware component
Compute cluster with two storage systems and set of working nodes: multi-CPU and
hybrid multi CPU + Neural Network Accelerators (GPU, FPGA etc.)

Middleware component
Software complex for management of multistep data processing and efficient loading
(usage) of computing facility.

Applied software
Performs informational processing of data.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 4 / 35

SPD Online Filter Middleware

Data Management System
Data lifecycle support (data catalog, consistency check,
cleanup, storage);

Workflow Management System
Define and execute data processing chains by generating
the required number of computational tasks;

Workload management System
Create the required number of processing jobs to
perform the task;
Control job execution through pilots working on
compute nodes;
Handles efficient use of resources.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 5 / 35

High-level architecture of SPD Online Filter
1 Data taking from DAQ;
2 Primary datasets registering;
3 Workflows initiating;
4 Task generation;
5 Acquisition the files metadata;
6 Job generation and

dispatching;
7 Data stage-in;
8 Data stage-out;
9 Uploading for long-term

storage and analysis.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 6 / 35

First “load testing”

Рис. 3: 100 concurrent Pilots processed ≈2,100 jobs in 7 minutes (≈15 s/job including
stage-in/out) on standard JINR Cloud VMs using a simplified synthetic payload.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 7 / 35

First “load testing”

Рис. 4: Workload Management System generates ≈ 5000 jobs in less than a minute.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 8 / 35

Conclusions

Codebase and deployment
Around ≈25 000 lines of code for the entire SPD Online Filter Middleware;
Full deployment requires ≈16 Docker containers: one container per microservice;
Integration infrastructure deployed on JINR Cloud resources on 9 VM’s.

Task and workflow processing has been achieved
Execution of the entire workflow set up on the level of Workflow Management
System;
The major cycle of refactoring and test coverage is required.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 9 / 35

Next steps and milestones

Middleware and applied software integration
Requires prototyped applied software and simulated data;
Non-functional requirements for applied software;
Move to the execution of the jobs on the pilot with a "real"payload.

Middleware deployment and release management
Focus on shipping SPD Online Filter as standalone software;
Work on the deployment on the upcoming testbed (256 CPU Cores, 1TB RAM,
120TB HDD);
Select the appropriate release management strategy.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 10 / 35

Thank you for your attention!

Рис. 5: The never-ending cycle of everyday life

Nikita Greben Meshcheryakov Laboratory of Information Technologies 11 / 35

Backup slides

SPD Online Filter

Рис. 6: SPD Online Filter Facility

Nikita Greben Meshcheryakov Laboratory of Information Technologies 13 / 35

Middleware

Definition
An intermediate software layer that connects hardware resources and
application services. Primary purpose is to abstract the complexity
of the compute cluster and provide a unified interface for application
software.

Key Functions
Data management
Coordination of multi-stage workflows
Efficient workload management, usage of computing resources.

Role in SPD Online Filter: bridges the dedicated compute
cluster and applied software, enabling a configurable and
scalable data-processing pipeline.

Рис. 7: Middleware

Nikita Greben Meshcheryakov Laboratory of Information Technologies 14 / 35

SPD DAQ

Data Acquisition System
The DAQ system takes raw data from
detector sensors and ensures that only the
most interesting events (collisions) are
recorded for later analysis, while discarding
unimportant ones due to limitations in
storage and processing.

Triggerless DAQ
Triggerless DAQ means that the output of
the system is not a set of raw events, but a
set of signals from sub-detectors organized
into time slices.

Рис. 8: Triggerless dataflow in SPD

Nikita Greben Meshcheryakov Laboratory of Information Technologies 15 / 35

SPD DAQ data

Рис. 9: Structure of SPD DAQ data

DAQ provide data organized
in time frames which placed
in files with reasonable size
(a few GB).
Each of these file may be
processed independently as a
part of top-level workflow
chain.
No needs to exchange of any
information during handling
of each initial file, but results
of may be used as input for
next step of processing.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 16 / 35

SPD DAQ data 2

Рис. 10: Structure of SPD DAQ data

The output of the system
will not be a dataset of raw
events, but a set of signals
from detectors organized in
time slices
Primary data unit: time
slice (10 s) Time slices
combined in time frames
(1-10 sec.)
Every slice will contain
signals from a few to many
collisions (events)
Event building have to
unscramble events from a
series of time slices

Nikita Greben Meshcheryakov Laboratory of Information Technologies 17 / 35

Data Processing in SPD Online Filter

Рис. 11: Example of multi-step processing scheme

Nikita Greben Meshcheryakov Laboratory of Information Technologies 18 / 35

High-throughput computing

Definition
The European Grid Infrastructure defines
HTC as "a computing paradigm that
focuses on the efficient execution of a large
number of loosely-coupled tasks".

Focus
Maximizing the number of tasks processed
per unit of time.

Reliability
HTC systems are mostly designed to
provide high reliability and make sure that
all tasks run efficiently even if any one of
the individual components fails.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 19 / 35

Data Management System

dsm-register (data registration)
A service that receive requests for adding/deleting data in the system asynchronously
(via Message Broker). Then the service makes changes to the data catalog via the API
of the dsm-manager.

dsm-manager (REST API of data catalog)
File and dataset management (adding data to a database, changing data, deleting
data).

dsm-inspector (daemon tasks)
Delete files on storage, check consistency of files, file upload control, monitoring the use
of storage (for example, "dark"data).

Nikita Greben Meshcheryakov Laboratory of Information Technologies 20 / 35

Data Management System

Рис. 12: Architecture of Data Management System

Nikita Greben Meshcheryakov Laboratory of Information Technologies 21 / 35

Workflow Management System

Responsibilities
Workflow Management System is a top-level component responsible for
defining and orchestrating data-processing workflows and for managing both
intermediate and final datasets. It retrieves input datasets, maps them to
CWL templates, generates and dispatches tasks for execution, and oversees
the entire dataset lifecycle.

Retrieves input datasets from Data Management System;
Maps these datasets with the appropriate CWL template;
Generates the workchain from this template;
Generates tasks and sends them to the Workload Management System
for further execution;
Oversees datasets: decision making for creation, closure, deletion;
Manages the concurrent execution of workchains and tasks.

Рис. 13: Task description

Nikita Greben Meshcheryakov Laboratory of Information Technologies 22 / 35

Workflows execution

Рис. 14: An example of the concurrent execution of several workflows.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 23 / 35

Workload Management System

Responsibilities
The Workload Management System is responsible for partitioning each task into
individual processing jobs, dispatching those jobs to Pilot agents on compute nodes,
and monitoring their execution. It ensures efficient resource utilization by generating the
appropriate number of jobs, tracking status, handling retries or failures, and aggregating
output files into new datasets.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 24 / 35

Workload Management System as Main Scheduling Mechanism

Role of Scheduling in WMS
In the Workload Management System (WMS), scheduling fulfills two primary functions:

Partitioning each task (dataset) into quanta for job generation based on dataset
priority – IWRR based scheduler.
Distributing ready jobs to compute nodes (Pilots) according to job priority –
rank-based scheduler.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 25 / 35

Workload Management System Architecture

Nikita Greben Meshcheryakov Laboratory of Information Technologies 26 / 35

Rank-Based Job Distribution Scheduler

Nikita Greben Meshcheryakov Laboratory of Information Technologies 27 / 35

SPD Online Filter middleware codebase

Nikita Greben Meshcheryakov Laboratory of Information Technologies 28 / 35

Workflow Management System Control Panel

Nikita Greben Meshcheryakov Laboratory of Information Technologies 29 / 35

High-throughput computing

Рис. 15: Task-job relationship

Nikita Greben Meshcheryakov Laboratory of Information Technologies 30 / 35

Interleaved Weighted Round-Robin (IWRR) Based Scheduler
Algorithm Description
The IWRR scheduler apportions “job-generation quanta” among active datasets in proportion to their
assigned weights (ranks). Let

D = {D1, D2, . . . , Dk}

denote the set of datasets marked running, each with integer rank wi ≥ 1. Define

W = max
i

wi .

The scheduler iterates over rounds
r = 1, 2, . . . , W .

In round r , it selects every dataset Di satisfying wi ≥ r . For each such Di , exactly one job is created for the
next unprocessed file in Di ’s input partition. That job is immediately enqueued into RabbitMQ. Once all files
belonging to Di have been assigned, Di is removed from the active set. By construction, higher-ranked
datasets participate in more of the W rounds, thereby receiving a proportionally larger share of job-generation
slots, while lower-ranked datasets still obtain at least one slot each. This ensures a balance between fairness
(each dataset Di appears in exactly min(wi , W) rounds) and priority (frequency of job creation scales linearly
with wi).

Nikita Greben Meshcheryakov Laboratory of Information Technologies 31 / 35

Interleaved Weighted Round-Robin (IWRR) Based Scheduler

Рис. 16: An example of the job generation procedure across several datasets being processed
concurrently.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 32 / 35

Rank-Based Job Distribution Scheduler
Algorithm Description
The Rank-Based Job Distribution scheduler repeatedly fetches a batch of ready jobs from the database,
ordered by descending rank. Formally, let

J =
{
J | status(J) = “ready”

}
.

At each polling interval, the Producer issues a query to the Job Manager API:

GET /jobs/get-chunk-ready/{N},

requesting the top N jobs sorted by rank rj (higher means more urgent). The API returns a list
{ J1, J2, . . . , JN} with

rJ1 ≥ rJ2 ≥ . . . ≥ rJN .

The Producer then validates each Ji and encapsulates it into a message, which is published to the appropriate
RabbitMQ queue (e.g., cpu or gpu). Pilot agents consume these messages, upon completion, a Pilot sends a
status update to the Collector, which invokes the Job Manager API to update the job’s status and, if
necessary, adjust its rank. Scheduler guarantees that more critical computations are dispatched before less
critical ones, achieving a priority-driven workflow.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 33 / 35

Rank-Based Job Distribution Scheduler

Рис. 17: Simplified diagram of the Job Distribution Scheduler’s working process.

Nikita Greben Meshcheryakov Laboratory of Information Technologies 34 / 35

Next Life Plan - Control Theory’s Dynamic Adaptability Scheduler
Each dataset has a rank (priority) that determines
its processing order;
Tasks are processed in priority order, with dynamic
updates to maintain system responsiveness;
Priority-based job scheduling mechanism is
expected, with rank update scheme involving
Control Theory (option to be explored later);
Not applicable at this stage of the development
process.

ri+1 = α ln(xi + 1)︸ ︷︷ ︸
Aging

− β2yi︸︷︷︸
Retry Penalty

+ γri︸︷︷︸
History

+ δ(1− L)︸ ︷︷ ︸
Load

ri+1 = Γri + α ln(xi + 1)− β · 2yi + δ(1− L)1

Γ = diag(γ1, ..., γN) (job-specific history weights)
xi = [x

(1)
i , ..., x

(N)
i]⊤ (job ages)

yi = [y
(1)
i , ..., y

(N)
i]⊤ (retry counts)

Nikita Greben Meshcheryakov Laboratory of Information Technologies 35 / 35

	SPD experiment at NICA collider
	SPD DAQ
	SPD Online Filter
	SPD Online Filter Middleware
	First “load testing”
	First “load testing”
	Conclusions
	Next steps and milestones
	Thank you for your attention!
	Backup
	Backup
	Middleware
	SPD DAQ
	SPD DAQ
	SPD DAQ
	Data Processing in SPD Online Filter
	High-throughput computing
	Data Management System
	Workflow Management System
	Workflows execution
	Workload Management System
	Workload Management System Architecture
	Rank‐Based Job Distribution Scheduler
	SPD Online Filter middleware codebase
	Workflow Management System Control Panel
	High-throughput computing
	Rank‐Based Job Distribution Scheduler
	Next Life Plan - Control Theory's Dynamic Adaptability Scheduler

