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Outline

▶ Types of phase transitions

▶ Phase diagram of water and beyond

▶ How well can we predict the phase diagram

▶ Expected phases of strongly interacting matter

▶ Where to find and how to look at hot dense nuclear matter

▶ Theoretical approaches to studying the QCD phase diagram

▶ Why the critical point is discussed: hopes and challenges
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Ehrenfest Classification (1933)
Classifies phase transitions by the lowest derivative of Gibbs free energy that shows
discontinuity:

1st Order Transition (Melting, boiling)

▶ Discontinuity in 1st derivatives:
▶ Entropy S = −(∂G/∂T )P (latent heat)
▶ Volume V = (∂G/∂P )T

2nd Order Transition (Ferromagnetic transition, superconductivity)

▶ Continuous 1st derivatives, discontinuity in 2nd derivatives
▶ Heat capacity CP = −T (∂2G/∂T 2)P
▶ Compressibility κT = − 1

V

(
∂2G/∂P 2

)
T

Missing Cases:

▶ Critical points (liquid-gas)

▶ Berezinskii-Kosterlitz-Thouless (BKT) transitions

▶ Quantum phase transitions (T = 0)
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How Do We Know the Structure of the Phase Diagram of Water?

▶ Experiment is still most reliable sours of quantitative data

▶ Theoretical approach

◦ Ab initio calculations

■ Density Functional Theory (Approximate)
■ Quantum Monte-Carlo (Computationally expensive)
■ Density Functional Theory + Molecular Dynamics

◦ Effective potentials

■ Lennard-Jones potential: U(r) ∼ Ar−12 −Br−6

■ Corrections accounting for symmetries and molecule spatial structure

◦ Modern techniques

■ Construction of effective potential via Deep Learning
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Picture from Abascal et al., J. Chem. Phys. (2005)
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Picture from Bore, Paesani, Nature Communication (2023)
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Picture from Reinhardt, Cheng, Nature Communication (2021)
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Picture from Niu el al., Nature Communication (2020)
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Main Phases of Strongly Interacting Matter

Quark-Gluon Plasma

▶ Presence of non-confined quarks

▶ Polyakov loop L(x) = 1
Nc

tr P exp
(
ig

∫ 1/T

0
A0(x, τ)dτ

)
evolution of static quark

▶ ⟨L⟩ = Zq/Z = exp[−Fq/T ] ̸= 0 indicates possibility of free quarks

Chiral condensate

▶ SU(Nf )L × SU(Nf )R = SU(Nf )A × SU(Nf )V → SU(Nf )V
▶ Chiral condensate ⟨q̄q⟩ ≠ 0 contributes to hadron masses

mu ∼ md = 3− 5MeV while mπ ∼ 140MeV and mp ∼ mn ∼ 1GeV
▶ dim SU(Nf )A = N2

f − 1 = 3 ⇒ three massless Goldstone bosons (π+, π−, π0)

Color superconductivity

▶ Analogy of the usual superconductivity via formation of Cooper pair
▶ Color condensate ⟨qq⟩ = ⟨qafqbf ′⟩ ≠ 0
▶ Gluons acquire mass and hence longitudinal component, massless phonon,

pseudo-scalar states
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Neutron Stars: Nature’s Ultimate Density Labs

Extreme Matter in a Teaspoon

To create 1 cm3 of quark-gluon plasma, you would need to:

▶ Compress a small mountain (∼3 Billion tons) into a sugar cube

▶ Heat it to 1.75 trillion K (100,000× Sun’s core temperature)

QGP Parameters at Critical Point
Temperature: 150 MeV (≈1.75×1012 K)
Chem. potential: 300 MeV
Energy density: 3.2×1029 J/cm3

These are approximately the conditions inside neutron star cores!
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Signatures of Phase Transitions in Neutron Stars

1. Equation of State Anomalies

▶ Mass-Radius relation changes:

▶ Stars with similar masses but
different radii

▶ Modified maximum mass limit
(≥2.3M⊙?)

▶ Abnormally compact or inflated
stars

2. Neutrino Cooling Anomalies

▶ Modified particle spectrum:

▶ Enhanced cooling via quark direct
URCA processes

▶ Enhanced cooling via increased
meson component

▶ Gapped modes near Fermi surface
(reduced cooling)

3. Gravitational Wave Features

▶ Tidal deformability

▶ Post-merger oscillation

4. Magnetic & Rotational Effects

▶ Differential rotation (crust vs quark core)

▶ Magnetic field anomalies

▶ Glitched behavior

Current observational data lacks conclusive evidence for any of
these signatures
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Probing QCD Matter: Colliders as Our Only Hope

Collider Experiments: A Microscopic Window

▶ Advantage: Can try to create conditions with various T and µB

▶ Challenges:

▶ Fleeting lifetime (< 10−22 s) - shorter than hadronization timescale
▶ Tiny volume involved (∼fm3)
▶ Final state always hadrons (QGP signals indirect)

The Ice Collider Analogy

Colliding tiny ice cubes ⇒ Studying resulting tiny ice fragments

Initial state is a solid phase ⇒ Final state also a solid phase

One sees no liquid remains, but asks whether melting had
occurred during an impact?
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What Sings of Possible Transitions We Expect

▶ J/ψ suppression since cc̄ pairs tend to dissolve in QGP due to screening of
the color field

▶ Jet quenching (suppression of particle production with high pT )

▶ The angular distribution of particles indicates that the medium in the
collision region behaves like an ideal fluid.

▶ Enhanced production of strange particles, because drcease of ⟨qq̄⟩
condensate makes effective ms smaller than typical temperature while in QGP
reactions gg → ss̄ and qq̄ → ss̄ are also enhanced

▶ In-medium mass shifts and corresponding change in meson decay widths

▶ Peaks of dilepton ēe and diphoton at relatively small energies ∼ 100 Mev
may indicate formation of light modes in color superconducting phase
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Phase Transition vs. Crossover

• Phase coexistence and latent heat release
▶ Sharp multiplicity change in narrow energy range

• Hysteresis effects: System properties depend on temperature
change rate
▶ Particle spectra/correlations at gradual collision energy changes

• Drastic change in heavy quark production
▶ Strange-charmed particle correlations

Current collider data support the crossover scenario for both the chiral transition
and the confinement-deconfinement transition, while providing almost no evidence

for a transition to the color superconductivity state
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Lattice Quantum Chromodynamics (LQCD)

Definition

Lattice QCD is a non-perturbative approach to QCD where:

▶ Continuous spacetime is discretized on a 4D Euclidean lattice

▶ Gluon fields are represented by SU(3) link variables Uµ(x)

▶ Quark fields reside on lattice sites

Path Integral on the Lattice

The partition function in continuum QCD:

Z =

∫
DADψDψ̄ e−S[A,ψ,ψ̄] → Zlat =

∫ ∏
x,µ

dUµ(x) det(M [U ])e−SG[U ]

Uµ(x) ≈ eigAµ(x)
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Problems and Predictions

Chemical Potential µ and the Sign Problem

▶ For µ ̸= 0, the fermion determinant becomes complex:

det(M [U, µ]) ∈ C

▶ The weight e−S det(M) cannot be interpreted as probability

▶ Standard Monte Carlo methods fail (require real positive weights)

▶ Calculations with imaginary µB and analytic continuation for µB/T ≲ 2

Phase Diagram Predictions (Small µ)

LQCD reliably predicts:

▶ Crossover for both the chiral transition and the confinement-deconfinement
transition at Tc ≈ 156 MeV (µ = 0)

▶ No first-order transition at small µ

▶ Critical point location remains uncertain

▶ Transition to the phase of color superconductivity remains uncertain
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Polyakov–Nambu–Jona–Lasinio (PNJL) Model

LPNJL = q̄(iγµDµ −m0)q +G
[
(q̄q)2 + (q̄iγ5τ⃗ q)

2
]
− U(Φ, Φ̄, T )

U(Φ, Φ̄, T )
T 4

= −a(T )
2

Φ̄Φ + b(T ) ln
[
1− 6Φ̄Φ + 4(Φ̄3 +Φ3)− 3(Φ̄Φ)2

]
Φ =

1

Nc
⟨trcL⟩, L(x⃗) = P exp

[
i

∫ β

0
A4(x⃗, τ)dτ

]
, Dµ = ∂µ − iδµ0A4

Picture from Fukushima, Phys. Rev. D (2008)
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Core Ideas of FRG

Key Concepts

▶ Mode separation via regulator function Rk(p): suppresses fluctuations with
p2 < k2 (slow modes) while keeps p2 > k2 (fast modes) integrated out

▶ Effective average action Γk Interpolates between bare action (k = Λ) and
full free energy (k = 0)

▶ Ansatz for Γk must capture relevant physics while remaining tractable

Wetterich Equation

∂kΓk =
1

2
Tr

[(
Γ
(2)
k +Rk

)−1
∂kRk

]
▶ Controls the flow of Γk
▶ Numerically solved from UV (k = Λ) to IR (k → 0)

▶ Works for any T and µ but gives rather uncontrolled approximation
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Picture from Fu, Phys. Rev. D (2020)
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Universality of Critical Behavior

▶ Near the critical point, second derivatives of the free energy exhibit
non-analytic behavior.

▶ A universality class is defined by systems sharing the same
dimensionality, symmetry, order parameter nature
These systems show identical singular behavior near criticality.

▶ The order parameter is a collective mode whose correlation length diverges
at the critical point.

Critical Exponent Liquid-Gas Transition Curie Point

α ≈ 0.11 C = −T ∂2F
∂T 2 ∼ (T − Tc)

−α C = −T ∂2F
∂T 2 ∼ (T − Tc)

−α

β ≈ 0.326 ρL − ρG = − ∂F
∂µ

∣∣∣
T
∼ (Tc − T )β M = − ∂F

∂H

∣∣
T
∼ (Tc − T )β

γ ≈ 1.237 χT = − ∂2F
∂µ2

∣∣∣
T
∼ |T − Tc|−γ χ = − ∂2F

∂H2

∣∣∣
T
∼ |T − Tc|−γ

δ ≈ 4.790 P − Pc =
∂F
∂V

∣∣
T
∼ |ρ− ρc|δ H = ∂F

∂M

∣∣
T
∼ |M |δ

η ≈ 0.036 G(r) = ⟨δρ(r)δρ(0)⟩ ∼ r−(d−2+η) G(r) = ⟨SiSj⟩ ∼ r−(d−2+η)

ν ≈ 0.630 ξ ∼ |T − Tc|−ν ξ ∼ |T − Tc|−ν
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Landau Theory Approach to 3D Ising Magnet

Partition Function Representation

Z =
∑
{Si}

e−H/kT =
∑
M

∑
{Si}|M

e−H/kT =
∑
M

e−Fmf (M)/kT

where Fmf (M) is the mean-field free energy and M = 1
N

∑
i Si.

▶ The magnetization distribution:

ρ(M) ∝ e−Fmf (M)/kT

▶ Key assumption: ρ(M) is sharply peaked at ⟨M⟩

∂Fmf (M)

∂M
= 0

For small M near the critical point, it is sufficient to
consider the leading terms in the expansion of Fmf

M

ρ(M)

⟨M⟩
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Limitations of Landau Theory

▶ Non-Gaussian fluctuations: Near Tc, the order parameter distribution
becomes wide (large variance), asymmetric (non-Gaussian tails),
dominated by long-wavelength fluctuations

▶ Modern approach: Keep Landau-like free energy functional but integrate
over all fluctuations:

Z =

∫
DM(x) e−S[M ], S[M ] =

∫
ddr

[
1

2
(∇M)2 +

a

2
M2 +

b

4
M4

]

Renormalization Group Solution

▶ Perturbation theory fails due to strong coupling near Tc

▶ By eliminating UV divergences, the renormalization group (RG) provides a
systematic way to handle fluctuations

▶ Yields critical exponents as fixed point properties
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Critical Fluctuations in QCD Matter

Cumulants as Fluctuation Measures

▶ κ2 = ⟨X2⟩ − ⟨X⟩2 = σ2

▶ κ4 = ⟨X4⟩ − 3⟨X2⟩2

▶ κ6 = ⟨X6⟩ − 15⟨X4⟩⟨X2⟩+ 30⟨X2⟩3

Where X can relate to particle multiplicity, electric and baryon charges

For baryon charge fluctuations

κ2n ∼ |T − Tc|2−n−α

Universality Classes

▶ Deconfinement transition – 3D Ising universality class (same as liquid-gas
and ferromagnetic transitions)

▶ Chiral transition – O(4) universality class
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Critical Slowing Down and Finite Size Efects

The collision of nuclei in a collider cannot be considered an equilibrium process

Langevin equation:

∂ϕ

∂t
= −Γ

δF [ϕ]

δϕ
+ η(r, t), ⟨ηη′⟩ = 2Γδ(t− t′)δ(r− r′)

Key Concept

Near Tc, relaxation times diverge due to growing correlation length ξ:

τ ∼ ξz ∼ |T − Tc|−zν

For different models z ∼ 2− 3

If the system size Lsys is smaller than the correlation length ξ, and its lifetime τsys
is shorter than the relaxation time τ , then critical fluctuations will be suppressed.
The system will exhibit behavior similar to that far from the critical point, which
may mask true critical behavior as a smooth crossover.
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Thank you for attention!


