

14th Collaboration Meeting of the BM@N Experiment at NICA

V.I.Veksler and A.M.Baldin Laboratory of High Energy Physics, JINR, Ман 13 – 15, 2025

Status of baryon femtoscopy in Ar run

<u>P. Alekseev</u>, L. Kovachev, R. Lednicky, V. Plotnikov, N. Pukhaeva, A. Stavinsky, N. Zhigareva for BM@N collaboration

Correlation function from experimental data of Ar run (TOF-700 identified)

Correlation function calculated as:

$$C(k^st) = rac{A(k^st)}{B(k^st)}
onumber \ k^st = rac{1}{2} \cdot |\overrightarrow{p_1^st} - \overrightarrow{p_2^st}|$$

A - correlated pairsB - uncorrelated (mixing)

Rapidity: 0.5 < y ≤ 1.7

Aim: Determining effective radius of proton and deuteron sources

Calculated correlation functions:

The FSI calculation assumes:

• a Gaussian r-distribution
$$\sim exp(-rac{r^2}{4r_0^2})$$
 where $r^2=(\overrightarrow{r})^2, \, \overrightarrow{r}=\overrightarrow{r_1}-\overrightarrow{r_2}$

- short-range FSI dominated by s-wave
- approximate account of the inner region of the short-range FSI potential (valid if r_o is larger than the effective potential radius)

Ar 3.2AGeV \rightarrow (Cu,Ar,Sn,Pb) Experimental data & Monte Carlo simulation

Correlation function from MC

- DCMSMM Gen.MC Reco.
- Generator's itself correlation function (obtained from MCTrack) $k^{\star}_{\scriptscriptstyle GEN}$
- Correlation function from identified particles in reconstructed MC events k^{\star}
- MC Reco. Rew. Reweighted correlation function (transfer function of the detector) $W_{GEN} = C^{-1}(k_{GEN}^*)$

13.05.2025

Correlation function

 $C(k^*) = A(k^*, w_{GEN}^{} w_{FSI}^{}) / B(k^*)$

χ^2 -test pd Ar \rightarrow Al,Cu,Sn,Pb

χ^2 -test pd Ar \rightarrow Al,Cu,Sn,Pb

χ^2							
	0 - 500 MeV/c						
Ro, fm	25 bin	30 bin	35 bin				
1,5	15,81	8,21	7,72				
2,0	8,26	6,24	6,41				
3,0	6,63	5,71	6,22				
4,0	7,12	4,87	5,74				
10,0	27,24	17,78	16,85				
20,0	39,61	26,16	23,84				
NDF	10	10	10				
bins	111	111	212				

χ^2 -test pp Ar \rightarrow Al, Ar \rightarrow Cu, Ar \rightarrow Sn, Ar \rightarrow Pb

pp Sn 47.93/13

≁4fm

Exp

0.2

0.25

pp Pb 19.39/13

1.8

16

1.4

1.8

1.6

14

1.2

0.8

0.6

0.4

0.2

0

++

0.05

0.1

0.15

χ^2 -test pp Ar \rightarrow Al, Ar \rightarrow Cu, Ar \rightarrow Sn, Ar \rightarrow Pb

χ^2								
r, fm	NDF	Ar-Al	Ar-Cu	Ar-Sn	Ar-Pb			
2,0	13	38,79	82,98	230,69	118,79			
2,4	13	24,99	32,93	110,06	47,32			
2,7	13	25,19	21,11	72,08	26,84			
3,0	13	28,49	18,62	55,11	19,39			
3,3	13	32,64	20,13	48,61	18,14			
3,6	13	36,64	23,08	47,03	19,61			
4,0	13	41,11	27,18	47,93	22,81			
5,0	13	48,09	34,58	53,15	29,70			

13.05.2025

Correlation function from TOF-700 & TOF-400 data

11

- Get common dst with TOF-400 and TOF-700 identified data
- Obtain appropriate MC with identification from both TOFs
- Determine r_o from p-p and p-d correlations on full set of Ar-run data
- Analyse p-d and p-p on Xe-run data
- Go to other particles species

Thank you for attention!

Radii

	А	A^1/3	$R^{d}_{coal}(pT = 0), fm^{*}$		D D
Ar	40	3,4			h-h
AI	27	3,0	2.7 ± 0.3	•	2.4
Cu	63	4,0	2.5 ± 0.2	•	3.0
Sn	120	4,9	2.8 ± 0.2	•	3.6
Pb	208	5,9	3.1 ± 0.2	•	3.3

* Production of protons, deuterons and tritons in 2 argon-nucleus interactions at 3.2A GeV (draft)

1.8

TOF-700 & TOF-400

13.05.2025

P. Alekseev