
Development of new Event Display and
auxiliary software for BM@N experiment

 Igor Dunaev
the MIPT team for the BM@N collaboration

14th Collaboration Meeting of the BM@N Experiment at the NICA Facility

MIPT Software for BM@N – Team

Supervision: T. A.-Kh. Aushev
Team members:

• P. Klimai
• A. Nozik
• I. Dunaev (student 6y)
• O. Nemova (student 6y)
• V. Kaplenko (student 6y)
• A. Degtyarev (PhD st. 2y)

2

Main Projects Summary

3

Project URL

Event Metadata System https://git.jinr.ru/nica_db/emd
https://git.jinr.ru/pklimai/ems-deploy

Next-generation Event Display https://git.jinr.ru/nica-visualization/visionforge
https://git.jinr.ru/nica-visualization/visapi
https://git.jinr.ru/nica-visualization/evis

Monitoring Service https://git.jinr.ru/nica-computing/mon-service-deploy

REST API and Web interface for slow control
system

https://git.jinr.ru/nica_db/tango_web
https://git.jinr.ru/nica_db/tango-rest

https://git.jinr.ru/nica_db/emd
https://git.jinr.ru/pklimai/ems-deploy
https://git.jinr.ru/nica-visualization/visionforge
https://git.jinr.ru/nica-visualization/visapi
https://git.jinr.ru/nica-visualization/evis
https://git.jinr.ru/nica_db/tango_web
https://git.jinr.ru/nica_db/tango-rest

Event Metadata System
(an update)

4

BM@N Event Metadata System

5

For more details:
E. Alexandrov, I. Alexandrov, A. Chebotov,
A. Degtyarev, I. Filozova, K. Gertsenberger,

P. Klimai and A. Yakovlev, “Implementation
of the Event Metadata System for physics
analysis in the NICA experiments”, J. Phys.:
Conf. Ser. 2438, 012046 (2023).

• Event Metadata System
• Event Catalogue based on PostgreSQL
• Integration with BM@N Condition database
• REST API and Web UI based on Kotlin

Multiplatform
• Configurable to support different metadata
• ROOT macro to fill the catalogue
• Automatic deployment
• High Availability solution
• Statistics collection and display
• Monitoring

Recent Progress for the EMS

6

• EMS progress
• New version deployed at https://bmn-event.jinr.int/ with about 700M records currently in it
• Performance improved for bulk writing of new events
• Improved error processing and display
• Statistics collection script developed and included in the main repository

https://bmn-event.jinr.int/

EMS Filtering Event Example
• Example obtaining events for run 6700, having 5+ tracks

• Pipe symbol is used for ranges, so filter is to be specified as “5|”

7

Development of Next-Generation Event
Visualization Platform for BM@N
(an update)

8

VisionForge – platform for creating next-gen visualization systems
• Distributed dynamic system

• Visualization model can be created on one node, transferred to another
node and rendered there

• Nodes can exchange updates to the model
• Changing one element or attribute only requires sending this small change

• Performance and optimizations
• BM@N geometry model includes more than 400 000 elements
• Geometry can be defined as prototype that is used by a set of objects, in this

case rendering is simplified – only required properties can be changed if
needed

9

VisionForge Project Overview

10

VisionForge Project Overview

See also:
● VisionForge project

– sciprog.center/projects/visionforge

● VisionForge source code

– git.sciprog.center/kscience/visionforge/src/branch/dev/

● Alexander Nozik — Unbearable lightness of data visualization in Kotlin full stack

– https://www.youtube.com/watch?v=uT5j-xOXC3E&ab_channel=JPoint%2CJo
ker%D0%B8JUGru

https://sciprog.center/projects/visionforge
https://git.sciprog.center/kscience/visionforge/src/branch/dev/
https://www.youtube.com/watch?v=uT5j-xOXC3E&ab_channel=JPoint%2CJoker%D0%B8JUGru
https://www.youtube.com/watch?v=uT5j-xOXC3E&ab_channel=JPoint%2CJoker%D0%B8JUGru

11

System Architecture

 Each new event/geometry request takes a significant time to process (approximately 8
seconds in the test setup)

 In case of geometry, the main reason is the JSON format and the size of geometry
objects themselves

 Events occupy much fewer space, but they take significantly more time to be extracted
from ROOT files.

 Long event load latency is the main distraction for the user looking several sequential
events

12

Event latency problem

Simple caching algorithm (LRU with prefetching):
 Check if the requested event has previously been loaded (hit or miss);

– If hit: return data from the cache;
– If miss: send a request to the VisAPI, add results to the cache and return the

data.
– For prefetching: check neighbouring events as well and load them in case of

misses;
 Disadvantages:

– Multiple request to a single event produce multiple requests to the VisAPI
(when serving several users);

– With prefetching, multiple requests to sequential events may produce many
requests to the VisAPI and block it (even when serving a single user)

13

Event Cache

Event service uses an improved LRU cache with prefetching algorithm to
reduce sequential event loading latency and improve user experience.

 Check if requested file has been loaded and its metadata are in the metadata
cache;

 Atomically:

 Check if requested event is in the cache;

 If it is missing, or if the user is close to a non-loaded event, a request to the
VisAPI is sent (asynchronously);

 If the request has been sent, deferred values are added to the cache;

 At this point, a deferred object of the requested event is guaranteed to be
present in the cache. Then the event object is awaited and returned.

14

Event Cache

• Available online at http://10.220.16.81:8080/
• Example input:

• Period number: 8
• Run number: 8000
• File address: /home/lab/events/mpd_run_Top_8000_ev1_p8.root
• Select event: 1, 2, 3,…

• Possible to build and run it on your own as well (source code available
at git.jinr.ru/nica-visualization/evis)

15

Available for test now!

http://10.220.16.81:8080/
https://git.jinr.ru/nica-visualization/evis

16

Geometry, tracks, scene graph, tuning

• Visualization of geometry of the detector with a detail level of choice.
• Working with the scene: the ability to scale, shift and rotate the scene, section by

plane.
• Saving scene configuration (JSON) to a file.
• Ability to show/hide geometric elements, set color, transparency. For a solid

detector, we loaded from a prepared scheme (XML or JSON) to replace the default.
• Visualization of particle collision events: display of tracks and hits. The source is a

ROOT file ROOT) stored on a server.
• Event objects and detector geometry are presented as a hierarchical tree, with

tracks grouped by particle type. When an object is selected in the tree, the object
is highlighted, and vice versa, when an object is selected in the view, its properties
are opened.

17

Available Features

• Desktop application with a web UI based on the current client-server solution.
• Real time visualization soluiton: the present visulization solution using websockets

to receive data for visualization and to update the data being visualized by web
clients.

• Saving an image, saving scene parameters (without event or geometry data itself)
to a file.

• Visualization hits and activated calorimeter towers. The source is either a file
(initially ROOT), or a data stream from the socket for online monitoring.

• Selection of event objects with viewing of their properties, editing of color,
visibility, marker, size/thickness. Selection/scrolling of transferred events in case of
the source from a file.

• Filter of displayed event objects: particles by their code, energy range, only
primary tracks. Show/hide separately simulated tracks/particles (before
reconstruction), reconstructed tracks/particles

• Show general information: selected setup geometry, event number, number of
events (if from file), number of displayed geometry objects.

18

WIP Items

Development of REST API and Web
interfaces for slow control system

19

BM@N slow control system database
• Updated version of Tango slow control database uses PostgreSQL
• Convenient REST API and Web access is required

20

API Service Development

• REST API was developed
• Using FastAPI framework
• Deployed in JINR network
• Used by Web interface (see next

slide)
• Sources available at

https://git.jinr.ru/nica_db/tango-
rest

21

https://git.jinr.ru/nica_db/tango-rest
https://git.jinr.ru/nica_db/tango-rest

• Web-based viewer for SCS was updated to use the new API and, hence, the
new database

• Available at https://bmn-tango.jinr.int/

22

Web Interface Development

https://bmn-tango.jinr.int/

Monitoring Service
(an update)

23

• Dasboard UI
– Configurable Quick overview
– Chart sorting
– HTTP response code chart

• Telegram alerts formatting
– [WIP] Quick alert summary

• Planned features
– User Manual
– Gateway Server, Log Collector Server,

Keycloak and FreeIPA service
healthchecks

– Event Metadata system and other
systems monitoring

24

New and Planned Features

25

New Dashboard UI

Thank You!

26

	Slides for 14th BM@N Meeting
	MIPT Software for BM@N – Team
	Main Projects Summary
	Event Metadata System (an update)
	BM@N Event Metadata System
	Recent Progress for the EMS
	EMS Filtering Event Example
	Development of Next-Generation Event Visualization Platform for
	VisionForge Project Overview
	Slide 10
	System Architecture
	Event latency problem
	Event Cache
	Slide 14
	Available for test now!
	Geometry, tracks, scene graph, tuning
	Available Features
	WIP Items
	Development of REST API and Web interfaces for slow control sys
	BM@N slow control system database
	API Service Development
	Web Interface Development
	Slide 23
	Slide 24
	Slide 25
	Thank You!

