First look at net charge and particle ratio event-by-event dynamical fluctuations with MPD

Bi+Bi collisions at $\sqrt{s_{NN}}$ = 9.2 GeV, UrQMD model

A. Chernyshov, G. Eyyubova, I. P. Lokhtin

Skobeltsyn Institute of Nuclear Physics Moscow State University

Motivation, physic interest

- Fluctuations of conserved quantities (B,S,Q) in a limited phase space probe the QGP phase.
- Differentiate partonic vs hadronic state.

D-measure:
$$4 \frac{\langle \delta Q^2 \rangle}{\langle N_{ch} \rangle}$$

 $D = \begin{cases} 4, \text{HG} \\ 3, \text{HRG} \\ 1 - 1.5, \text{QGP} \end{cases}$

S. Jeon, V. Koch, Phys. Rev. Lett. **85**, 2076 S. Jeon, V. Koch, arXiv:hep-ph/0304012

Fluctuations of total charge $Q \sim q^2$ of sources

- Non-monotonic behavior in fluctuations as a function of beam energy are proposed as signatures of the QCD critical point.
 J.Phys.G34:S437,2007; Phys. Rev. Lett. 81, 4816 (1998)
- At NICA it is possible to investigate fluctuations via collision energy.

Dynamical net charge fluctuations

- Net-charge, net-proton, net-strangness fluctuations are analysied in terms of moments of distributions (M, standard deviation σ, skewness S, kurtosis κ), higher moments (cumulants).
- Dynamical fluctuation variable \mathbf{v} was introduced (to get rid from statistical fluctuations) which measures deviation from Poisson behavior:

$$\nu_{dyn}[+,-] = \frac{\langle N_+(N_+-1)\rangle}{\langle N_+\rangle^2} + \frac{\langle N_-(N_--1)\rangle}{\langle N_-\rangle^2} - 2\frac{\langle N_+N_-\rangle}{\langle N_+\rangle\langle N_-\rangle}$$

 $\nu_{dyn} < 0$ → (opposite charge) correlations dominate
 $\nu_{dyn} > 0$ → (same charge) fluctuations dominate
 $\nu_{dyn} = 0$ → independent particle production

For
$$\langle N_+ \rangle \approx \langle N_- \rangle$$
: $D = 4 \frac{\langle \delta Q^2 \rangle}{\langle N_{ch} \rangle} \approx \langle N_{ch} \rangle \langle v_{dyn} \rangle + 4$

Experimental data on net-charge fluctuations

MPD Results

Data set /eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp07-22-500ev-req25/BiBi/09.2GeV-mb/urqmd/BiBi-09.2GeV-mp07-22-500ev-req25/0,1,...

Event selection: $|v_z| < 30$ cm, $v_{xy} < 2$ cm, 12 M events

MC tracks: Tracks for final hadrons with $0.1 < p_T < 3 \text{ GeV/c}$, $|\eta| < 1$ Final hadrons = (p,K,π) from primary vertex ($\sqrt{(MCHeader->GetX() - trackMC->GetStartX())^2 + ...} < 1e-6)$

• Generally results have to be corrected for global charge conservation effect.

UrQMD MC vs reconstructed

Reco tracks: (MpdTrack*)event \rightarrow GetGlobalTracks(); track \rightarrow GetNofHits() > 15, dca < 1 cm; 0.1 < p_T < 3 GeV/c, $|\eta| < 1$

- v observable was found robust against random efficiency losses.
- Holds only if efficiency is independent on multiplicity

C. Pruneau, S. Gavin, S. Voloshin, Phys. Rev. C 66, 044904 (2002).

ν(N_{ch}) observable has to be corrected for the efficiency.
To be done...

- Fair good MC-rec agreement.
- Track contamination (additional number of uncorrelated particles with random charges), electron elimination ...

have to be explored further

Particle Ratio Fluctuations

Particle Ratio Fluctuations

$$\frac{p/\pi}{(p^+ + p^-)/(\pi^+ + \pi^-)} \qquad \begin{array}{c} K/\pi & K/p \\ (K^+ + K^-)/(\pi^+ + \pi^-) & (K^+ + K^-)/(p^+ + p^-) \end{array}$$

- Non-monotonic behavior of the K/ π yield ratio at $\sqrt{s_{NN}} \sim 7.6$ GeV at SPS for central Pb+Pb collisions is observed and is supposed to be a signature of phase transition. S. V. Afanasiev et al. (The NA49 Collaboration), Phys. Rev. C 66 054902 (2002)
- At SPS σ_{dyn} observable was used.
- STAR uses v_{dyn}

$$\nu_{\rm dyn,K\pi} = \frac{\langle N_K (N_K - 1) \rangle}{\langle N_K \rangle^2} + \frac{\langle N_\pi (N_\pi - 1) \rangle}{\langle N_\pi \rangle^2} - 2 \frac{\langle N_K N_\pi \rangle}{\langle N_K \rangle \langle N_\pi \rangle}$$

 \succ ν_{dyn} < 0 → (Kπ) correlations dominate \succ ν_{dyn} > 0 → (KK), (ππ) fluctuations dominate or anticorrelation (Kπ)

Particle ratio fluctuations $V_{dyn,x/y}$

Summary and near plans

- Net charge fluctuations were calculated using v (and vN_{ch}) observable in BiBi collisions at 9.02 GeV with UrQMD model at MC and Reco levels.
 - Fair good agreement between MC and Reco for ν observable (may be improved by using PID in reconstruction?)
 - \succ vN_{ch} -observable has to be corrected for the tracking efficiency (to be done).
 - Next: study of track contamination and electron elimination by using PID in reconstruction.

Particle ratio fluctuations were calculated using ∨ observable at MC level.
➢ Next: to include PID at Reco level.

UrQMD MC vs reconstructed

Reco tracks: (MpdTrack*)event \rightarrow GetGlobalTracks(); track \rightarrow GetNofHits() > 15, dca < 1 cm; 0.1 < p_T < 3 GeV/c, $|\eta| < 1$

- Efficiency = N_{reconstructed} / N_{MC track} can be improved by varying cuts on rec tracks.
- Contamination: reconstructed tracks which do not match MC tracks of final hadrons (see previous slide).
- Fraction of contamination = N_{contamination} / N_{reconstructed}

- Weak centrality dependence.
- \succ Large contamination at low p_{T} .