

Status of track reconstruction for SPD

V. Andreev (LPI, Moscow)

Introduction

Track reconstruction is usually divided on two separate sub-tasks:

- a) track finding (or pattern recognition);
- b) track fitting (in general on the base of Kalman filter method).

Track finding:

- a) division set of measurements in the tracking detectors (vertex and tracker) into subsets;
- b) each subset contains measurements believed to originate from the same particle.

Track fitting - starts with the measurements inside one subset as was provided by the track finder.

2D

- **3D** global fitting picking stereo hits Z-S fit + ambiguity tracks
- 1. Track finding algorithm starts from 2D (x-y plane) :
 - use the wire position of fired straw tubes as input;
 - apply conformal and Hough transformations;
 - consider z-axial straw tubes and find peaks;
 - provide 2D circle fitting;
 - picking stereo hits (hits from tilted straw tubes);
 - estimation of z and phi of track candidate;
 - finally apply 3D Kalman fitting.

V. Andreev,

Event example

Red points – hits in straw parallel to z-axis Green points – hits in straw tilted on $+3^{\circ}$ Blue points – hits in straw tilted on -3°

- 1. Use PYTHIA8 with open charm production option at $\sqrt{s} = 27$ GeV as testing event sample
- 2. Middle plot presents fired z-axial straw tubes in XY projection
- 3. Transform (only rotate) global coordinate of straw tubes to the local coordinates system (or coordinates which coincide with system of Octant 3)
- 4. All further consideration will be done in local coordinate

- 5) find peaks on 2D histogram and select axial hits;
- 4) 2D circle fitting;

20

2D finding efficiency

₠≖₩₩

1.4

1.4

1.6

1.8

2

Pt

1.6

1.8

2

Pt

7

Longitudinal track reconstruction

- 1. Charge particle trajectory in constant magnetic field is helix which can be described:
 - a) in XY plane as circle with radius $R = PT / 0.3 \cdot B$;
 - b) z-coordinate is the function of arc length (s), $z(s) = z0 + s \cdot tan\lambda$, where $s = (\Phi \Phi 0) \cdot R \cdot q$,

 Φ – azimuthal angle, λ – dip angle, z0 and Φ 0 – track parameters in starting point or in primary vertex

2. The z-position for each hit in a tilted straw tube is extracted through an alignment procedure as illustrated below. The track radius is determined before by the pattern recognition procedure in XY-plane.

Since these tubes are tilted, the projection of the drift radius onto the XY-plane becomes an ellipse. The drift ellipse is aligned such way that its center position lies along x-axis of layer and is tangential to the particle trajectory.

This alignment provides two solutions, introducing a left/right ambiguity with one solution on each side of the trajectory

Longitudinal track reconstruction (2)

Recursive annealing fit:

- a) fit by line to all points;
- b) remove point with largest residual;
- c) calculate new line fit;
- d) repeat until one point has been rejected for each straw tube;
- e) do final line fit.

Recursive annealing fit is used in our case.

Example of recursive fit

Another event example (only 1-st generation tracks)

80 100 x, cm

Another event example (all generation tracks)

Red points – hits in straw parallel to z-axis

Green points – hits in straw tilted on +3°

Blue points - hits in straw tilted on -3°

V. Andreev,

Another event example (2)

V. Andreev,

Another event example (longitudinal track finding)

3D global fitting

This longitudinal hits finding procedure provides the next track candidate parameters:

- a) tilted hits which are belong to the considered track candidate;
- b) estimation of theta and phi angles;
- c) estimation of primary vertex position or track position at the first point.

Last step of reconstruction is the fitting procedure of track candidates:

- a) we have set of straw tubes (or hits) which are belonged to the track candidate;
- b) estimated position of 1-st track point;
- c) estimation of track momentum (Px, Py, Pz) at the 1-st track point (or in the primary vertex);
- d) then standard SPD fitting procedure (on the base Kalman filter from Genfit2) can be applied.

Conclusion - track reconstruction procedure using the only straw detector works.

Track reconstruction (only 1-st generation, Ts hits > 6)

Reconstruction track (only 1-st generation)

Reconstruction efficiency (only 1-st generation)

Track reconstruction (all generation)

Reconstruction efficiency (all generations)

Eff vs θ

Summary

- 1. General schema for track reconstruction works.
- 2. It provides relatively good track reconstruction efficiency.
- 3. Need to check some points and tune the reconstruction procedure.
- 4. Preliminary conclusion present tracker geometry is "acceptable" for the track reconstruction using only straw tracker.