

Study of the MPD Performance in the Fixed Target Mode for Λ Hyperon Selection (req.35 Xe+W@2.5GeV)

D. Suvarieva ¹ and A. Zinchenko ¹ (for the MPD Collaboration)

1– Joint Institute for Nuclear Research Dubna, Moscow region, Russia

Outline

- Motivation for the Study of Hyperons
- **Overview of Multi Purpose Detector (MPD) FXT**
- Methods: Topological Cuts (TC)
- → Λ Hyperon Resonstruction: $\Lambda \rightarrow p + \pi^{-1}$
- \blacktriangleright Efficiency and p_T spectra of Λ Hyperons
- Summary

Physics Motivation

✓ Significance of Hyperons:

• They have attractive experimental features, making them valuable tools for monitoring detector performance

✓ Astrophysical Relevance:

• Hyperons provide essential signatures of excited and compressed baryonic matter

• Help us to understand how matter behaves in extreme conditions in neutron stars

✓ Quantum Chromodynamics (QCD):

• Study of hyperons helps to understand strong interactions and QGP

✓ Experimental Techniques:

Research on hyperons improves
experimental methods and data analysis
techniques in high-energy physics

The Goal of This Study

 Λ hyperon reconstruction using the MPD in fixed-target mode:

- signal extraction
- efficiency estimation
- $^\circ$ $p_{\rm T}\mbox{-}spectra$ analysis across centrality intervals

Dilyana Suvarieva

Data Set

Generator: UrQMD, Geant -4, Min.bias (b = 0-15 fm), Xe+W @ 2.5 GeV, 15M events

✓ **Detectors:** MPD with fixed target

Analysis: Hyperon Wagon in the Analysis Train

Track reconstruction: two-pass Kalman filter with track seeding using outer hits (1st pass) or leftover inner hits (2nd pass)

✓ **Track acceptance criterion:** $|\eta| < 1.3$, NTPC_hits ≥ 10

✓ **Particle Identification:** dE/dx in TPC & m² in TOF (A. Mudrokh)

✓ **Methods:** Topological Cuts (TC)

Multi – Purpose Detector General View Fixed-Target Mode (FXT)

The wire-target is installed at z = -85 cm, wire diameter is 50 um, wire is shifted by 1.4 cm upwards in Y. **Time-Projection Chamber (TPC):** Main tracking

detector

Time-Of-Flight (TOF): Particle identification via timeof-flight

Electromagnetic Calorimeter (Ecal): Measurements of photons and electrons

Forward Hadron Calorimeter (FHCal): Measures centrality and event plane

Forward Detector: Provides fast trigger for TOF

All subdetectors are located inside a superconducting solenoid

<u>http://mpd.jinr.ru/mpd/</u>

Method – Topological Cuts (TC)

• \mathbf{P} V – primary vertex • \mathbf{V}_0 – vertex of Λ decay • **d**ca – distance of the closest approach

• **path** – decay length

Maximization of significance: Significance is defined as $S/\sqrt{(S+B)}$, where **S** and **B** are the total numbers of signal and background combinations inside $\pm 2\sigma$ interval around the invariant mass peak position (σ is taken from Gaussian fit of the peak).

Invariant Mass Λ and Phase Space

- ✓ $10.chi2s[][0] > 25.0 normalized \pi$ -to-primary vertex impact parameter
- ✓ l0.chi2s[][1] > 11. normalized proton-to-primary vertex impact parameter
- ✓ l0.chi2h < 10. chi2 of secondary vertex reconstruction
- ✓ 10.disth < 0.8 distance of the closest approach
- ✓ 10.path > 3. lambda decay path
- I0.angle < 0.04 lambda momentum and primary-to-secondary vertex vector noncollinearity

- **Selection:** $0 \le y \le 1$.
- ✓ Centrality bins: 0-10%, 10-20%, 20-40%, 40-60%, 60-80%, 80-100%

Efficiency of Λ Reconstruction versus Transverse Momentum in Centrality Intervals

Invariant p_{T} -spectrum of Λ in Centrality Bins

Invariant p_T -spectrum of Λ in all Centrality Bins

- \succ Λ spectra comparison in 0 ≤ y < 1.
- Good agreement in central events
- ➤ Analysis in high p_T at peripheral events is limited for this data set

- The MPD detector shows good performance in FXT mode for reconstructing Λ hyperons
- Invariant mass and p_T spectra are reliably reconstructed, showing agreement with generated distributions
- **These results confirm the feasibility of hyperon studies in MPD/FXT**

Thank you for your atetion!

Some BackUp

Efficiency of Λ Reconstruction versus Transverse Momentum in Centrality Intervals

Invariant $p_{\rm T}$ -spectrum of Λ in Centrality Bins

Invariant p_T -spectrum of Λ in all Centrality Bins

Invariant $p_{\rm T}$ -spectrum of Λ in Centrality Bins

Invariant p_T -spectrum of Λ in all Centrality Bins

