

Identified Hadrons Measurements (π, K, p) in XeW@2.5 GeV (MPD-FXT)

M.Malaev, D. Ivanishchev, V.Riabov

* We acknowledge support from Russian Ministry of Education and Science, state assignment for fundamental research (code FSEG-2025-0009)

Outline

- * Light charged hadrons spectra ($\pi/K/p$) needed
- Simplified approach based on n-sigma method for TPC/TOF:
 - ✓ limited pT range at higher momenta
 - \checkmark minimization of model-dependent corrections
 - \checkmark robust \rightarrow most appropriate for the first-day analysis & results
- ✤ Before: results in <u>BiBi@9.2</u> collisions
- ✤ Today: analysis details and results in <u>XeW@2.5</u> AGeV (fixed target mode)
- ✤ Data: Request 36, 15M UrQMD events, Xe-W(T = 2.5 GeV/n, FTX)

Generated spectra

✤ Almost no difference for pions; NO antiprotons; considerable asymmetry for kaons

♦ Spectra are soft \rightarrow low p_T part is very crutial

Fraction of spectrum lost (p_T dependence)

* The fraction of total spectrum lost if spectrum starts from p_T in the most left column

St pT	Proton	Pi+	Pi-	K+	K-
0.05	0.005	0.037	0.037	0.007	0.014
0.10	0.019	0.131	0.134	0.029	0.053
0.15	0.042	0.259	0.266	0.064	0.114
0.20	0.074	0.394	0.404	0.112	0.193
0.25	0.114	0.514	0.526	0.170	0.279
0.30	0.162	0.616	0.630	0.236	0.370
0.35	0.215	0.700	0.713	0.306	0.462
0.40	0.272	0.767	0.779	0.378	0.547
0.45	0.333	0.820	0.831	0.450	0.623
0.50	0.395	0.861	0.870	0.520	0.691
0.55	0.457	0.893	0.901	0.586	0.747
0.60	0.518	0.918	0.924	0.648	0.798
0.65	0.576	0.937	0.942	0.703	0.840
0.70	0.631	0.952	0.956	0.753	0.874
0.75	0.681	0.963	0.966	0.796	0.900
0.80	0.727	0.972	0.974	0.833	0.920
0.85	0.768	0.979	0.980	0.865	0.938
0.90	0.804	0.984	0.985	0.891	0.951
0.95	0.835	0.988	0.989	0.914	0.962
1.00	0.863	0.991	0.991	0.932	0.970

PID strategy (π, P)

- Event selection: centrality 0-90%
- Track selection: TPC-hits > 24 DCA-to-PV $< 2\sigma_{x,y,z}$ $|y_{cms}| < 0.5$
- Two quasi-independent measurements for π/p :
- 1st: (TPC-TOF)

TPC 2 σ -PID selection for a given specie (π/p) If track is 2 σ -matched to TOF then TOF 2 σ -PID selection for a given specie (π/p)

• 2nd: (TOF-TPC)

TOF 2 σ -PID selection for a given specie (π/p) TPC 2 σ -PID selection for a given specie (π/p)

Spectra are reconstructed while purity > 95%: spectra are corrected for impurities → impose 50% uncertainty for the correction value = 0.5 * 5% = 2.5% pT-correlated systematic uncertainty for spectra
TPC-TOF and TOF-TPC spectra are combined for final results for minimum total uncertainties

PID strategy (Kaons)

- Event selection: centrality 0-90%
- Track selection: TPC-hits > 28 DCA-to-PV < $2\sigma_{x,y,z}$ $|y_{cms}| < 0.5$
- Two quasi-independent measurements for K:
- 1st: (TPC-TOF)

TPC 1σ -PID selection for a given specie (K) If track is 2σ -matched to TOF then TOF 1σ -PID selection for a given specie (K)

TPC 3σ -veto-PID for other species (for K - $e/\pi/p$ veto)

• 2nd: (TOF-TPC)

TOF 1σ -PID selection for a given specie (K) TPC 1σ -PID selection for a given specie (K) TOF 3σ -veto-PID for other species (for K - e/ π /p veto)

Spectra are reconstructed while purity > 90%: spectra are corrected for impurities → impose 50% uncertainty for the correction value = 0.5 * 5% = 2.5% pT-correlated systematic uncertainty for spectra
TPC-TOF and TOF-TPC spectra are combined for final results for minimum total uncertainties

Pions (TPC+TOF→TPC; TOF+TPC→TOF)

★ Accepted p_T range is defined by purity > 95% → whole range is fine for π^- and limits p_T range to ~1.2 GeV/c for π^+

Protons

★ Accepted p_T range is defined by purity > 95% → whole range is fine

Kaons

★ Accepted p_T range is defined by purity > 90% → limits p_T range to ~1.2 GeV/c for K⁺ and ~0.9-1 GeV/c for K⁻

Particle sources

✤ Fractions of primaries in the measured spectrum (primaries – produced at dist < 1 cm from PV</p>

Clean raw spectrum

Combined spectra – transition point

✤ Relative statistical uncertainties for TPC-TOF and TOF-TPC spectra

Final Spectra, pions

5

9 10 Centrality Bin

Centrality Bin

Final Spectra, protons

• Start at $p_T \sim 100 \text{ MeV/c}$

✤ Measured spectra sample ~97% of the total yields, loose ~3% at low p_T , high p_T reach limited only by statistics

Final Spectra, kaons

Centrality Bin

7 8 9 10 Centrality Bin

Summary

- ★ A very straightforward approach for $\pi/K/p$ measurements is proposed → good for the first-day measuments
- ♦ Generated spectra are soft \rightarrow reconstruction of low p_T part is very crucial
- * Losses at high p_T negligible and/or statistic dependent
- ***** Losses at low pT is ~ 3-5% for pions, protons and K⁺, ~15% for K⁻