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The most general scenario is a collapse of high matter densities.

The mass of pbh M(t,,), formed during the time t after the big bang

M(ty) = C3£M ~ 10%° (10523 sec) g. (1)
From (1) pbh have a wide range of masses, in particular for the Planck time
ty =~ 107*3s, pbh has a Planck mass M(ty) = 107°g, quantum-gravitational
effects will be significant.
Quantum black holes gqbh are currently understood as Schwarzschild

black holes, r =,

qbn X lpand mass m = mgp, X Mp.

However, due to formula (1), gqbh can be formed in the Early Universe as
pbh in the Planck time =~ 10™*3s. Regardless of the way qbh is formed ,
quantum gravitational effects are essential for them.

In all cases, one can find quantum-gravitational corrections for the main
characteristics of black holes, which will be significant for gbh .

In particular, if the Generalized Uncertainty Principle (GUP) is valid in



the transition to high (Planck) energies (Nouicer, PLB,2007):

(6X)(6P) = - <exp“ % p2y

In first order (8X)(8P) = g( 2’%’ (6P) ) (2%)

then there can exist a Planck black hole (which will be called “minimal” below)
with a minimum mass Myand radius of the event horizon 7,,;,:

Mo X My, Tyin = Tyy = bpin < L3 A =c=Kg =1, then [; =G, m,* =1/G.
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Semiclassical approximation , Hawking temperature, Ty =

Within the framework of GUP, quantum-gravitational corrections (qgc):
_ 1 iy (=10
Taq = 8TM 12 €xp < W ( e (M) ))’

2
W(—é(%)) — —value at the corresponding point of the Lambert function

W), Wmwe"™ =u; W(u) - Lambert W-function.

W(u) is the multifunction for complex variable u = x+ yi. However for



example for real u= x,—i <u<0,, W) is the single-valued continuous

function with two branches W, W_; is present picture .
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Tyq can be expanded into a series in terms of a small parameter (My/M)?

with the the leading first term:
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Then, within the framework of GUP, M - M,:
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For Schwarzschild black holes,and c=h =1;ry, = 2MG - T, = 2MqG.
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The metric of a Schwarzschild black hole

Js? — _( 2MG) de? + ( 2MG)_1 dr? + r2d0? (%)

r

When studying the Early Universe for PBHs , (*) is replaced by the

Schwarzschild-de Sitter (SdS) metric,

s? = —f(Hdt* + ﬁ + 72dQ?% (*%)

26M AF2 2GM 72
where f(¥) =1 — . 2

3/A, M is the black hole mass , ¥ is a small quantity, and A is the

cosmological term.In this case for small radii rggsy = 2G6M = 1.

In the general case, in particular in inflationary cosmology,last metric

written in terms of conformal time n:

2 _ 2 _ 2
ds? = a?(){—dn? + e

3.3\4/3 3.3 ,.3 2
Mr;I ) [(1 p'n’/r ) dr? +r2d92]},



where u = (GMH,/2)'/3, where H, is the deSitter Hubble parameter

1 dt t dt’
a=a(m)=-gon<0  dyp= om0 = )20

Here r it satisfies the condition ro <r <o and the value ry=—un
corresp. to the black hole singularity.u = (ryHy/4)Y/3, with high accuracy.

U = const, (Prokopec, Reska,JCAP 2011). Then if in formula "shifts”
Ty:Ty & Ty, then “shifts” accordingly, and Hy:H, = H, so that pu =
(ryHo /N3 = (iyHy /)3, Hy = %HO and all others cosm.param. All
“shifts” relatively qgc

Initially, a primordial black hole is considered in the absence of absorption

and emission processes. Since u = const, the replacement ry, » ™™, leads

to Hy = Hy, that satisfies

1 1 1 1
p=ryHy/4)3 = (quHO,q/4')3 9H0,q = Hyexp (_EW(_ZarM)) (*)

And all cosm.param. (q-deformation)



Let M the initial mass of the black hole with the area of the event horizon
be A. Bekenstein 1973: the minimum increment of the area of the black hole
event horizon absorbing the particle of energy and size R was estimated E:

(AA)o = 41;(In2)ER . In quantum consideration R ~ 28X and E ~6P .

Semiclassical Picture.

low energies E < E,, that is, HUP, (6X)(6P) = g (A4)y = 415 (In2).

For all energies: E < E,, GUP, (AA)Oq ~ 4lzz,ln2exp (—%W (—éa,.M)).

Black Hole Evaporation and ggc

Similarly can be obtained analog (!) for Black Hole Evaporation

R(MEvap)
Hy - H = ——H
0 O'q R(Mq,Evap) 0

where R(Mg,q,) — radius gbh after evaporation in semiclassical

approximation and R(Mggy,qp) — in quant-grav. picture (qgc)



for tpyap = Linft — ty-

[t is assumed that non-relativistic particles with a mass
m <m, dominate in the pre-inflationary period and, for convenience, denote
the Schwarzschild radius as R;. N(R,t) the number of particles in ball with
physical radius R = R(t) and volume V(t).
Due to above formulae, it is necessary to replace the Schwarzschild radius

Tm, = TMeXP (%W (—%arM)); M, = Mexp (%W (—%arM)>

Thus, ry, <ry; Mg <M.= Prorm(Mg) > Prorm(M)

Well-known Friedman Equation without term with curvature



2
a’ 8
= =3 6P

a(m) - a(m),; Quantum Deformation (QD)

or

a* 3 3
_ 1
pPq = pexp| W (—EaTM> < p.

Similarly procedure for other Friedman equations, in part

a'* 8m 1 87
— = —Gpexp| W (—EarM) =—Gpy,



In result p, = pexp (W (—larM)) <p.

e

And the equation of the covariant energy conservation remains unaltered with

replacementof p - p,,p = p,

[p'=-3%(p+p)] - [py = —3%(pg +py)]

6. Enhancement of Non-Gaussianity by the ggcs-corrections

Deviation from the Gaussian distribution for the random field g(x) is a nonzero value

of the three-point correlator

(gklgkzgk:;) — (Zn)36i1+k2+kSBg(k1) kz, k3) * 0;

where gy,i = 1,2,3 represent the Fourier transform g(x) inthe momentum k; and
the quantity Bg, named the bispectrum, is a measure of non-Gaussinity for the random

field g(x).



We can show that, with due regard for the foregoing qgcs, the absolute value of the

bispectrum B, in the inflation pattern for different random fields is growing.

6.1 Non-gaussianity corrections from the inflaton self-interaction
8¢ - perturbation of inflaton ¢.
We suppose that the metric perturbations 8g =~ 0.

Then bispectrum B, in this case

self
o

2ym self _ pself

B
where the asterisk denotes a value of the corresponding quantity

during inflation which is taken to be constant

self self

— 2 m __ 1 2y7m .,
Bjopn = B, ~ HAV. = exp (—zw (—;arM)) H2V!;



self self

. 1 self
B6¢,Mq = exp (—ZW (_Zarm)) B&p ,

5¢M | >| self

6.2 The Non-Gaussianity Correction of Field Perturbations from

Gravitational interactions

In the above analysis of non-Gaussianity there was no metric perturbation because
the gravitational interaction was excluded. When it is taken into consideration, the
non-Gaussianity in this case arises from the metric perturbation and the bispectrum

takes the following form:

1 Vv’
BV =7 ~ — _H4(—|.
o.M 5¢ 8 vV

Then similarly 6.1

B = exp(-2w(~1a,,))BL", B |>| B




6.3 Non-Gaussianity Correction for the Tensor Primordial Perturbations

H}

4 L]

plens=ptens _
M m}

Bi™ = exp (—ZW(—%arM)) Btens;  |Bis| >|Brens|

In all cases the same (universal) Non-Gaussianity Enhancement coefficient

exp (—ZW (— % arM)) > 1.



7. The Quantum PBH in Pre-inflation Era and RGW. Beginning, (E. Lifhits,1946;
L.P. Grishchuk,71974,1975,1976,... 1993, ...)

|hy;| < |gy

hoo = hog = 0,(a =1,2,3); hY; =0 - gauge conditions (; covariant derivative with
respect ds?)
ds? = a(n)?[—dn? + dr? + r*d0?], dsq2 = a(n)qz[—dn2 +dr? +
r’dn?]
Next, theansatz h,p(m, x) = h(1)G,p5(k,x); G,z — combination of plane-
waves solutions  with the two polarizations exp(tikx).

The evolution equation for the temporal part of the wave



R (k) + 252 (") D (k) + K2h(k, ) = 0,

What is the definition h(k,n) = ”:("n’;)

W) + (K2 =) p(a) = 0, pm)y" + (ko* — S 2) n(n)g = 0 (7.1)

Here k = |k| isthe wave-number, this is the same as the wave number k = aw.

Znaq
= aqw; h(l,m) ~ h(k,m)g; k(1) ~ p()g = p(n, ky).

ds* - dsi, k - k, =

r 1

= % ; 1. €. high frequency waves

7.a (k2 > “7”) k2 > 2

) q aq

Eqg. (7.1) for 7.a -- harmonic oscillator with the varying frequency where solution is a

free wave u(n), = p(n, k,) = e***a", and then corr. amplitude

h(n), = a(n)q_lsin(kqn + ¢) decreases adiabatically in an expanding universe

a;l =a lexp (—%W(—%am)) and thus sharper then a™!



1 r 14
7.b (k* < %); qu K a;’ = a;; general solution (7.1) isalinear combination
q

1 1
Wiq =a(m)q = Hyexp (EW (——arM)),

Mzq = a()g) dna(m), * = ppexp (—%W(—%am))-

of pair

In expanding Universe py will grow faster than p, and similarly for p; , and p, ;.

However for g-deformation this growth is dampened by exp (i %W (— % arM)>.

Nevertheless general solution (7.1) pq for 7.b: pg ~ pyq and  L.P. Grishchuk 1993
showed that the amplitude of h,g (and in present case (hqg(m,x)q)) is the constant if

7.b. The amplitude of h,g willgrow if 7.b  isnotsatisfied for n — 0.

This phenomenon is “superadiabatic” or “parametric” amplification of gravitational

Wwaves.



Other _scenarios of pbhs presence: quantum tunneling, finite temperature
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8. Conclusion and Further Steps

In this way it has been demonstrated that, within the scope of natural assumptions,
the ggcs calculated for pbhs arising in the pre-inflationary epoch contribute significantly
to the inflation parameters, enhancing non-Gaussianity in the case of cosmological
perturbations. Besides, withy due regard for these ggcs, the probability of arising pbhs is
higher. Based on these results, the following steps may be planned to study the
corrections of cosmological parameters and cosmological perturbations due to ggcs for
pbhs in the pre-inflationary era:

8.1. Comparison of these results obtained in Section 6 with the experimental data
accumulated by space observatories: (Planck Collaboration), ( WMAP
Collaboration),(Hubble), ),( James Webb),... and solution of direct and inverse

problems;



8.2. Elucidation of the fact, how closely the author’s results are related to general
approaches to inclusion of the quantum-gravitational effects in studies of inflationary

perturbations (for example, Claus Kiefer and other);

8.3. These studies are part of the following program:
Pbhs tormed in pre-inflation era — pbhs tormed in the inflation result —
— Astroparticle physics in the presence of these pbhs (or same Cosmomicrophysics,

Maxim Khlopov and other ).



