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1. Primordial Black Holes 

     The most general scenario is a collapse of high matter densities. 

The mass of pbh 𝑀(𝑡𝑀), formed during the time 𝑡  after the big bang  

 𝑀(𝑡𝑀) ≈
𝑐3𝑡𝑀

𝐺
≈ 1015 (

𝑡

10−23 sec) 𝑔. (1) 

From (1) pbh have a wide range of masses, in particular for the Planck time 

𝑡𝑀 ≈ 10−43s, pbh has a Planck mass 𝑀(𝑡𝑀) ≈ 10−5𝑔, quantum-gravitational 

effects will be significant. 

Quantum black holes qbh are currently understood as Schwarzschild 

black holes, 𝑟 = 𝑟𝑞𝑏ℎ ∝ 𝑙𝑝and mass 𝑚 = 𝑚𝑞𝑏ℎ ∝ 𝑀𝑝.  

However, due to formula (1), qbh can be formed in the Early Universe as 

pbh in the Planck time ≈ 10−43s. Regardless of the way qbh is formed , 

quantum gravitational effects are essential for them. 

In all cases, one can find quantum-gravitational corrections for the main 

characteristics of black holes, which will be significant for qbh . 

In particular, if the Generalized Uncertainty Principle (GUP)  is valid in 



the transition to high (Planck) energies (Nouicer, PLB,2007): 

            (𝜹𝑿)(𝜹𝑷) ≥
ℏ

𝟐
〈𝐞𝐱𝐩

𝜶𝟐𝒍𝒑
𝟐

ℏ𝟐 𝑷𝟐〉 

In first order  (𝜹𝑿)(𝜹𝑷) ≥
ℏ

𝟐
(𝟏 +

𝜶𝟐𝒍𝒑
𝟐

ℏ𝟐
(𝜹𝑷)𝟐)      (2*) 

then there can exist a Planck black hole (which will be called “minimal” below) 

with a minimum mass 𝑀0and radius of the event horizon 𝑟𝑚𝑖𝑛: 

   𝑴𝟎 ∝ 𝒎𝒑, 𝒓𝒎𝒊𝒏 = 𝒓𝑴𝟎
= 𝒍𝒎𝒊𝒏 ∝ 𝒍𝒑; ℏ = 𝐜 = 𝐤𝐁 = 𝟏, then 𝒍𝒑

𝟐 = 𝑮, 𝒎𝒑
𝟐 = 𝟏/𝑮. 

Semiclassical approximation , Hawking temperature, 𝑻𝐇 =
𝟏

𝟖𝝅𝑮𝑴
  

Within the framework of GUP, quantum-gravitational corrections (qgc):    

 𝑇H,𝑞 =
1

8𝜋𝑀𝑙𝑝
2 exp (−

1

2
𝑊 (−

1

𝑒
(

𝑀0

𝑀
)

2
)),  

𝑊 (−
1

𝑒
(

𝑀0

𝑀
))

2

− −value at the corresponding point of the Lambert function 

𝑊(𝑢),   𝑾(𝒖)𝒆𝑾(𝒖) = 𝒖; 𝑾(𝒖) − Lambert W-function. 

 𝑊(𝑢) is the multifunction for complex variable 𝑢 = 𝑥 + 𝑦𝚤 . However for 



example for  real 𝑢 = 𝑥, −
1

𝑒
≤ 𝑢 ≤ 0, , 𝑊(𝑢)  is the single-valued continuous 

function with two branches 𝑊0,𝑊−1   is present picture . 

Johann  Heinrich  Lambert   (1728--1777) 
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𝑻𝐇,𝒒 can be expanded into a series in terms of a small parameter (𝑴𝟎/𝑴)𝟐 

with the the leading first term: 

𝑻𝐇,𝒒 ≃
𝟏

𝟖𝝅𝑴𝒍𝒑
𝟐 (𝟏 +

𝟏

𝟐𝒆
(

𝑴𝟎

𝑴
)

𝟐
+

𝟓

𝟖𝒆𝟐 (
𝑴𝟎

𝑴
)

𝟒
+

𝟒𝟗

𝟒𝟖𝒆𝟑 (
𝑴𝟎

𝑴
)

𝟔
+ ⋯ ),  

Then, within the framework of GUP, 𝑀 → 𝑀𝑞: 

 𝑻𝐇,𝒒 ≃
𝟏

𝟖𝝅𝑴𝒒𝒍𝒑
𝟐 ; 𝑴𝒒 ≐ 𝑴𝐞𝐱𝐩 (

𝟏

𝟐
𝑾 (−

𝟏

𝒆
(

𝑴𝟎

𝑴
))

𝟐

)    

For Schwarzschild black holes,and  𝑐 = ℏ = 1; 𝑟𝑀 = 2𝑀𝐺 → 𝑟𝑀𝑞
= 2𝑀𝑞𝐺. 

𝑻𝑯,𝒒 ≃
𝟏

𝟖𝝅𝑴𝒍𝒑
𝟐 (𝟏 +

𝟏

𝟐𝒆
(

𝒓𝒎𝒊𝒏

𝒓𝑴
)

𝟐
+

𝟓

𝟖𝒆𝟐 (
𝒓𝒎𝒊𝒏

𝒓𝑴
)

𝟒
+

𝟒𝟗

𝟒𝟖𝒆𝟑 (
𝒓𝒎𝒊𝒏

𝒓𝑴
)

𝟔
+ ⋯ ),  

             (
𝑴𝟎

𝑴
)

𝟐
= 

𝒓𝒎𝒊𝒏
𝟐

𝒓𝑴
𝟐 ≐ 𝜶𝒓𝑴

,  

 

𝒆𝒙𝒑 (±
𝟏

𝟐
𝑾 (−

𝟏

𝒆
(

𝑴𝟎

𝑴
)

𝟐
)) = 𝒆𝒙𝒑 (±

𝟏

𝟐
𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

. ))  

 



3 Primordial  Black Holes and ”Quantum Shifts” (QS) for 

Cosmological Parameters in Inflation Models 

The metric of a Schwarzschild black hole  

𝑑𝑠2 = − (1 −
2𝑀𝐺

𝑟
) 𝑑𝑡2 + (1 −

2𝑀𝐺

𝑟
)

−1
𝑑𝑟2 + 𝑟2𝑑Ω2 (∗) 

When studying the Early Universe for PBHs , (∗ ) is replaced by the 

Schwarzschild-de Sitter (SdS) metric,  

 𝒅𝒔𝟐 = −𝒇(𝒓̃)𝒅𝒕𝟐 +
𝒅𝒓̃𝟐

𝒇(𝒓̃)
+ 𝒓̃𝟐𝒅𝛀𝟐 (∗∗)  

where 𝒇(𝒓̃) = 𝟏 −
𝟐𝑮𝑴

𝒓̃
−

𝚲𝒓̃𝟐

𝟑
= 𝒇(𝒓̃) = 𝟏 −

𝟐𝑮𝑴

𝒓̃
−

𝒓̃𝟐

𝑳𝟐, 

𝑳 = √𝟑/𝚲, 𝑴  is the black hole mass , 𝑟̃ is a small quantity, and Λ is the 

cosmological term.In this case for small radii 𝒓𝐒𝐝𝐒,𝐌 ≈ 𝟐𝑮𝑴 = 𝒓𝐌. 

In the general case, in particular in inflationary cosmology,last metric  is 

written in terms of conformal time 𝜂: 

𝒅𝒔𝟐 = 𝒂𝟐(𝜼){−𝒅𝜼𝟐 + (𝟏 +
𝝁𝟑𝜼𝟑

𝒓𝟑 )
𝟒/𝟑

[(
𝟏−𝝁𝟑𝜼𝟑/𝒓𝟑

𝟏+𝝁𝟑𝜼𝟑/𝒓𝟑)
𝟐

𝒅𝒓𝟐 + 𝒓𝟐𝒅𝛀𝟐]},  



where 𝝁 = (𝑮𝑴𝑯𝟎/𝟐)𝟏/𝟑, where 𝑯𝟎 is the deSitter Hubble parameter  

𝒂 = 𝒂(𝜼) = −
𝟏

𝑯𝟎𝜼
, 𝜼 < 𝟎;    𝐝𝜼 =

𝒅𝒕

𝒂(𝒕)
, 𝜼 = ∫

𝒅𝒕′

𝒂(𝒕′)

𝒕

𝟎
.      

Here 𝒓   it satisfies the condition 𝒓𝟎 < 𝒓 < ∞  and the value 𝒓𝟎 = −𝝁𝜼  

corresp. to the black hole singularity.𝝁 = (𝒓𝑴𝑯𝟎/𝟒)𝟏/𝟑, with high accuracy. 

𝝁 = 𝒄𝒐𝒏𝒔𝒕, (Prokopec, Reska,JCAP 2011 ).   Then if in formula ”shifts” 

𝑟𝑀: 𝑟𝑀 ↦ 𝑟𝑀̃, then ”shifts” accordingly, and 𝐻0: 𝐻0 ↦ 𝐻̃0 so that 𝝁 =

(𝒓𝑴𝑯𝟎/𝟒)𝟏/𝟑 = (𝒓𝑴̃𝑯̃𝟎/𝟒)𝟏/𝟑, 𝑯̃𝟎 =
𝒓𝑴

𝒓𝑴̃
𝑯𝟎 and all others cosm.param. All 

”shifts” relatively qgc 

3.1 Initially, a primordial black hole is considered in the absence of absorption 

and emission  processes. Since 𝜇 = 𝑐𝑜𝑛𝑠𝑡, the replacement 𝑟𝑀 ↦ 𝑟𝑀𝑞
  leads 

to 𝐻0 → 𝐻0,𝑞  that satisfies 

 𝝁 = (𝒓𝑴𝑯𝟎/𝟒)
𝟏

𝟑 = (𝒓𝑴𝒒
𝑯𝟎,𝒒/𝟒)

𝟏

𝟑 ,𝑯𝟎,𝒒 = 𝑯𝟎𝐞𝐱𝐩 (−
𝟏

𝟐
𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

)) (!) 

 And all cosm.param.   (q-deformation)     



3.2 Case of “minimal” absorption of particles by a black hole . 

Let 𝑀  the initial mass of the black hole with the area of the event horizon 

be 𝐴. Bekenstein 1973: the minimum increment of the area of the black hole 

event horizon absorbing the particle of energy and size 𝑅 was estimated 𝐸: 

(Δ𝐴)0 ≃ 4𝑙𝑝
2(ln2)𝐸𝑅 . In quantum consideration 𝑅 ∼ 2𝛿𝑋 and 𝐸 ∼ 𝛿𝑃 .  

Semiclassical  Picture. 

low energies 𝑬 ≪ 𝑬𝒑, that is, HUP, (𝛿𝑋)(𝛿𝑃) ≥
ℏ

2
, (Δ𝐴)0 ≃ 4𝑙𝑝

2(ln2). 

  For all energies: 𝑬 ≤ 𝑬𝒑, GUP, (Δ𝐴̂)
0,𝑞

≈ 4𝑙𝑝
2ln2exp (−

1

2
𝑊 (−

1

𝑒
𝜶𝒓𝑴

)).  

3.3 Black Hole Evaporation and qgc  

Similarly can be obtained analog  (!)  for Black Hole Evaporation  

         𝑯𝟎 ↦ 𝓗𝟎,𝒒 =
𝑹(𝑴𝑬𝒗𝒂𝒑)

𝑹(𝑴𝒒,𝑬𝒗𝒂𝒑)
𝑯𝟎, 

where 𝑹(𝑴𝑬𝒗𝒂𝒑) – radius qbh after evaporation in semiclassical 

approximation and 𝑹(𝑴𝒒,𝑬𝒗𝒂𝒑) – in quant-grav. picture (qgc) 



for  𝒕𝑬𝒗𝒂𝒑 = 𝒕𝑰𝒏𝒇𝒍 − 𝒕𝑴. 

4 Black Holes Formation Probability Corrections 

It is assumed that  non-relativistic particles with a mass 

𝑚 < 𝑚𝑝  dominate in the pre-inflationary period and, for convenience, denote 

the Schwarzschild radius as 𝑅𝑆. 𝑵(𝑹, 𝒕)  the number of particles in ball with 

physical radius  𝑅 = 𝑅(𝑡) and volume 𝑉𝑅(𝑡).  

Due to above formulae, it is necessary to replace the Schwarzschild radius 

𝒓𝑴 with 

 

      𝒓𝑴𝒒
= 𝒓𝑴𝐞𝐱𝐩 (

𝟏

𝟐
𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

)); 𝑴𝒒 = 𝑴𝐞𝐱𝐩 (
𝟏

𝟐
𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

))  

    Thus, 𝒓𝑴𝒒
< 𝒓𝑴; 𝑴𝒒 < 𝑴. ⟹ 𝓟𝒇𝒐𝒓𝒎(𝑴𝒒) > 𝓟𝒇𝒐𝒓𝒎(𝑴) 

                  5. q-deformation of Friedmann Equations    

     Well-known Friedman Equation without term with curvature  



                          
𝒂′𝟐

𝒂𝟒 =
𝟖𝝅

𝟑
𝑮𝝆, 

𝑎(𝜂) → 𝑎(𝜂)𝑞;  Quantum Deformation (QD)   

                        

𝑎𝑞′2

𝑎𝑞
4 =

𝑎′2

exp (𝑊 (−
1
𝑒 𝛼𝑟𝑀

)) 𝑎4

=
8𝜋

3
𝐺𝜌 

or 

𝑎′2

𝑎4
=

8𝜋

3
𝐺𝜌exp (𝑊 (−

1

𝑒
𝛼𝑟𝑀

)) ≐
8𝜋

3
𝐺𝜌𝑞 ,

𝜌𝑞 ≐ 𝜌exp (𝑊 (−
1

𝑒
𝛼𝑟𝑀

)) < 𝜌.

 

  Similarly  procedure  for other Friedman  equations, in part 

                       𝟐
𝒂″

𝒂𝟑 −
𝒂′𝟐

𝒂𝟒 = −
𝟖𝝅

𝟑
𝑮𝒑        



   In  result   𝒑𝒒 ≐ 𝒑𝒆𝒙𝒑 (𝑾 (−
𝟏

𝒆
𝜶𝒓𝑴

)) < 𝒑.   

 And  the equation of the covariant energy conservation remains unaltered with 

replacement of 𝜌 ↦ 𝜌𝑞 , 𝑝 ↦ 𝑝𝑞 

         [𝝆′ = −𝟑
𝒂′

𝒂
(𝝆 + 𝒑)] → [𝝆𝒒

′ = −𝟑
𝒂′

𝒂
(𝝆𝒒 + 𝝆𝒒)]    

 

          6. Enhancement of Non-Gaussianity by the qgcs-corrections 

Deviation from the Gaussian distribution for the random field 𝑔(𝐱) is a nonzero value 

of the three-point correlator  

⟨𝒈𝒌𝟏
𝒈𝒌𝟐

𝒈𝒌𝟑
⟩ = (𝟐𝝅)𝟑𝜹𝒌𝟏+𝒌𝟐+𝒌𝟑

𝟑 B𝒈(𝒌𝟏, 𝒌𝟐, 𝒌𝟑) ≠ 𝟎, 

where 𝑔𝐤𝐢
, 𝑖 = 1,2,3 represent the Fourier transform 𝑔(𝐱) in the momentum 𝑘𝑖  and 

the quantity B𝑔, named the bispectrum, is a measure of non-Gaussinity for the random 

field 𝑔(𝐱). 



We can show that, with due regard for the foregoing qgcs, the absolute value of the 

bispectrum B𝑔 in the inflation pattern for different random fields is growing. 

      6.1   Non-gaussianity corrections  from the inflaton self-interaction  

       𝛿𝜙 – perturbation of  inflaton 𝜙.  

   We suppose that the metric perturbations 𝜹𝒈 ≈ 𝟎.  

   Then  bispectrum B𝒈 in this case 

                           B𝜹𝝓
𝒔𝒆𝒍𝒇

∼ 𝑯∗
𝟐𝑽∗

‴, B𝜹𝝓
𝒔𝒆𝒍𝒇

≡ B𝜹𝝓,𝑴
𝒔𝒆𝒍𝒇

 

          where  the asterisk denotes a value of the corresponding quantity  

      during inflation which is taken to be constant 

             B𝜹𝝓,𝒒
𝒔𝒆𝒍𝒇

≡ B𝜹𝝓,𝑴𝒒

𝒔𝒆𝒍𝒇
∼ 𝑯𝒒∗

𝟐 𝑽𝒒∗
‴ = 𝐞𝒙𝒑 (−𝟐𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

)) 𝑯∗
𝟐𝑽∗

‴;          

             



            B𝜹𝝓,𝑴𝒒

𝒔𝒆𝒍𝒇
=  𝐞𝒙𝒑 (−𝟐𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

))B𝜹𝝓
𝒔𝒆𝒍𝒇

, |B𝜹𝝓,𝑴𝒒

𝒔𝒆𝒍𝒇
| > |  𝐁𝜹𝝓

𝒔𝒆𝒍𝒇
| .      

      6.2 The Non-Gaussianity Correction of Field Perturbations from            

               Gravitational interactions 

 

In the above analysis of non-Gaussianity there was no metric perturbation because 

the gravitational interaction was  excluded. When it is taken into consideration, the 

non-Gaussianity in this case arises from the metric perturbation and the bispectrum 

takes the following form: 

B𝜹𝝓,𝑴
𝒈𝒓𝒂𝒗

 ≡ B
𝜹𝝓

𝒈𝒓𝒂𝒗
∼ −

𝟏

𝟖
𝑯∗

𝟒 (
𝑽′

𝑽
) . 

Then  similarly  6.1    

          B𝜹𝝓,𝑴𝒒

𝒈𝒓𝒂𝒗
=  𝐞𝒙𝒑 (−𝟐𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

))B𝜹𝝓
𝒈𝒓𝒂𝒗

, |B𝜹𝝓,𝑴𝒒

𝒈𝒓𝒂𝒗
| > |  𝐁𝜹𝝓

𝒈𝒓𝒂𝒗
| 



 

 

6.3 Non-Gaussianity Correction for the Tensor Primordial Perturbations 

                                𝑩𝑴
𝒕𝒆𝒏𝒔≡𝑩𝒕𝒆𝒏𝒔 ∼

𝑯∗
𝟒

𝒎𝒑
𝟒 . 

  B𝑴𝒒

𝒕𝒆𝒏𝒔 =  𝐞𝒙𝒑 (−𝟐𝑾 (−
𝟏

𝒆
𝜶𝒓𝑴

)) 𝑩𝒕𝒆𝒏𝒔;   |B𝑴𝒒

𝒕𝒆𝒏𝒔| >|𝐁𝒕𝒆𝒏𝒔| 

In all cases the same (universal) Non-Gaussianity Enhancement coefficient      

                       

                       𝐞𝒙𝒑 (−𝟐𝑾 (−
𝟏

𝒆
𝜶𝒓𝑴

)) > 𝟏.     

 

 

 



7. The Quantum PBH in Pre-inflation Era and RGW. Beginning, (E. Lifhits,1946; 

 L.P. Grishchuk,1974,1975,1976,…  1993,…)    

 

𝒈
𝒊𝒋

= 𝒈𝒊𝒋 + 𝒉𝒊𝒋(𝒙𝒊)  (𝒊, 𝒋 = 𝟎, 𝟏, 𝟐, 𝟑),

|𝒉𝒊𝒋| ≪ |𝒈𝒊𝒋|
 

𝒉𝟎𝟎 = 𝒉𝟎𝜶 = 𝟎, (𝜶 = 𝟏, 𝟐, 𝟑); 𝒉𝒊𝒋
;𝒋 = 𝟎 – gauge conditions (; covariant derivative with 

respect 𝒅𝒔𝟐)  

       𝒅𝒔𝟐 = 𝒂(𝜼)𝟐[−𝒅𝜼𝟐 + 𝒅𝒓𝟐 + 𝒓𝟐𝒅𝜴𝟐],  𝒅𝒔𝒒
𝟐 = 𝒂(𝜼)𝒒

𝟐[−𝒅𝜼𝟐 + 𝒅𝒓𝟐 +

𝒓𝟐𝒅𝜴𝟐]  

    Next,  the ansatz  𝒉𝜶𝜷(𝜼, 𝒙) = 𝒉(𝜼)𝑮𝜶𝜷(𝒌, 𝒙); 𝑮𝜶𝜷 − combination of plane-

waves solutions   with  the two polarizations exp(±i𝒌𝒙). 

The evolution equation for the temporal part of the wave 



              𝒉′′(𝒌, 𝜼) + 𝟐
𝒂′(𝜼)

𝒂(𝜼)
𝒉′(𝒌, 𝜼) + 𝒌𝟐𝒉(𝒌, 𝜼) = 𝟎,   

What is the definition 𝒉(𝒌, 𝜼) ≡
𝝁(𝒌,𝜼)

𝒂(𝜼)
 

     𝝁′′(𝜼) + (𝒌𝟐 −
𝒂′′(𝜼)

𝒂(𝜼)
) 𝝁(𝜼) = 𝟎, → 𝝁(𝜼)𝒒

′′
+ (𝒌𝒒

𝟐 −
𝒂′′(𝜼)

𝒂(𝜼)
) 𝝁(𝜼)𝒒 = 𝟎 (7.1) 

Here 𝒌 = |k|  is the wave-number, this is the same as the wave number 𝒌 = 𝒂𝝎.  

𝒅𝒔𝟐 → 𝒅𝒔𝒒
𝟐, 𝒌 → 𝒌𝒒 =

𝟐𝝅𝒂𝒒

𝝀
= 𝒂𝒒𝝎; 𝒉(𝒌, 𝜼) → 𝒉(𝒌, 𝜼)𝒒; 𝝁(𝜼) → 𝝁(𝜼)𝒒 = 𝝁(𝜼, 𝒌𝒒). 

7.a  (𝒌𝟐 ≫
𝒂′′

𝒂
) , 𝒌𝒒

𝟐 ≫
𝒂𝒒

′′

𝒂𝒒
=

𝒂′′

𝒂
 ; i. e. high frequency waves    

Eq. (7.1)  for 7.a  -- harmonic oscillator with the varying frequency  where solution is a 

free wave 𝝁(𝜼)𝒒 = 𝝁(𝜼, 𝒌𝒒) = 𝒆±𝒊𝒌𝒒𝜼, and then  corr. amplitude 

 𝐡(𝛈)𝒒 = 𝐚(𝛈)𝒒
−𝟏𝒔𝒊𝒏(𝒌𝒒𝜼 + 𝝓)  decreases adiabatically in an expanding universe 

       𝒂𝒒
−𝟏 = 𝒂−𝟏𝒆𝒙𝒑 (−

𝟏

𝟐
𝑾 (−

𝟏

𝒆
𝜶𝒓𝑴

)) and  thus sharper then  𝒂−𝟏 



     

    7.b  (𝒌𝟐 ≪
𝒂′′

𝒂
);  𝒌𝒒

𝟐 ≪
𝒂𝒒

′′

𝒂𝒒
=

𝒂′′

𝒂
;  general solution (7.1)  is a linear  combination 

of  pair
𝛍𝟏,𝐪 = 𝐚(𝛈)𝐪 = 𝛍𝟏𝐞𝐱𝐩 (

𝟏

𝟐
𝐖 (−

𝟏

𝐞
𝛂𝐫𝐌

)) ,

 𝛍𝟐,𝐪 = 𝐚(𝛈)𝐪∫ 𝐝𝛈𝐚(𝛈)𝒒
−𝟐 = 𝛍𝟐𝐞𝐱𝐩 (−

𝟏

𝟐
𝐖 (−

𝟏

𝐞
𝛂𝐫𝐌

)) .
 

In  expanding  Universe 𝝁𝟏 will grow faster than 𝝁𝟐 and similarly for 𝝁𝟏,𝒒 and 𝝁𝟐,𝒒.  

However for q-deformation this growth is dampened  by 𝐞𝐱𝐩 (±
𝟏

𝟐
𝐖 (−

𝟏

𝐞
𝛂𝐫𝐌

)). 

Nevertheless  general solution (7.1) 𝛍𝐪 for 7.b: 𝛍𝐪 ≈ 𝛍𝟏,𝐪 and   L.P. Grishchuk 1993 

showed  that the amplitude of  𝒉𝜶𝜷 (and in present case (𝒉𝜶𝜷(𝜼, 𝒙)𝒒)) is the constant if 

7.b. The amplitude of  𝒉𝜶𝜷 will grow if  7.b  is not satisfied  for  𝜼 → 𝟎.   

This phenomenon is “superadiabatic” or “parametric” amplification of gravitational 

waves. 



 

Other  scenarios оf  pbhs  presence: quantum tunneling, finite temperature 

D. J.  Gross, M.J. Perry, and M.J. Yaffe, Phys. Rev. D 25, 330 (1982); 

radiation-dominated  stage of  universe 𝒑 =
𝟏

𝟑
𝝆; ⟹ the Quantum PBH 

Other  scenarios of RGWs  appearing  in  pbhs  presence:  

7.2 Alexander D. Dolgov, Damian Ejlli, 

 Relic gravitational waves from light primordial black holes, 

 Phys.Rev.D 84 (2011) 024028; 

7.3 Martti Raidal, Ville Vaskonen, Hardi Veermäe, 

  Gravitational Waves from Primordial Black Hole Mergers, 

 JCAP 09 (2017) 037 

 

https://arxiv.org/search/astro-ph?searchtype=author&query=Raidal,+M
https://arxiv.org/search/astro-ph?searchtype=author&query=Vaskonen,+V
https://arxiv.org/search/astro-ph?searchtype=author&query=Veerm%C3%A4e,+H


 

 

     8. Conclusion and Further Steps 

In this way it has been demonstrated that, within the scope of natural assumptions, 

the qgcs calculated for pbhs arising in the pre-inflationary epoch contribute significantly 

to the inflation parameters, enhancing non-Gaussianity in the case of cosmological 

perturbations. Besides, withy due regard for these qgcs, the probability of arising pbhs is 

higher. Based on these results, the following steps may be planned to study the 

corrections of cosmological parameters and cosmological perturbations due to  qgcs for 

pbhs in the pre-inflationary era: 

8.1. Comparison of these results obtained in Section 6 with the experimental data 

accumulated by space observatories: (Planck Collaboration), (WMAP 

Collaboration),(Hubble), ),( James Webb),…   and solution of direct  and  inverse  

problems; 

 



8.2. Elucidation of the fact, how closely the author’s results are related to general 

approaches to inclusion of the quantum-gravitational effects in studies of inflationary 

perturbations (for example, Claus Kiefer and other); 

 

8.3.  These studies are part of the following program: 

Pbhs  formed in pre-inflation era → pbhs formed in the inflation result →  

→ Astroparticle physics in the presence of these pbhs  (or same Cosmomicrophysics,   

Maxim Khlopov and other ). 


