A.V. Ivashkevich,V.M. Red’'kov

Nonrelativistic approximation in the Pauli
— Fierz theory for a spin 3/2 particle in
presence of external fields

It is known that for relativistic equations for higher spin particles,
some anomalous solutions are found which may be associated
with particles moving with velocity greater than the light one.
There arises the question how behave these anomalous solutions
in the non-relativistic limit.

Also it is evident that non-relativistic equations are solved
easier than relativistic ones. In the present paper we derive the
non-relativistic equation for spin 3/2 particle in presence of external
electromagnetic fields.

We start with the relativistic system of equations for 16-
component wave functions with transformation properties of vector-
bispinor under the lorentz group. When performing the non-
relativistic approximation, for separating in the complete wave
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function big and small components we apply the method of
projective operators.

Correspondingly, the complete wave function is presented as
a sum of three parts: the big W, depending on 6 variables, and
the small Wg and W_, depending on 14 variables. There are found
2 linear constraints on big components, and 2 constraints on the
small ones.

The system of equations is presented in explicit form with
the use of 20 new variables. After performing the procedure of
non-relativistic approximation we derive 6 equations with the
needed non-relativistic structure, in which enter only 4 main
primary big components. It is proved that only 4 equations are
independent, so we arrive at the generalized Pauli -like equation
for 4-component wave function.

T he structure of the derived equation definitely indicates that
any anomalous solutions cannon appear, for instance in presence
of external uniform electric or magnetic fields.



1 Initial covariant equation

et us start with tetrad based form of the master equation for
spin 3/2 particle

_ 1
,YSchanrYC |:I(D8)n/ - §Mq/a5n/ \U/ — O, (1)

where M = mc/h is a mass parameter, the presence of the
multiplier is meaningful; the generalized derivatives are

| 1, . |
Da = €3 (O + ieAa) + 5(07 @ 1 + 1 @ /) Yppsla: (2)

With the use of six matrices €, = (ul@) " eq. (1) may be
presented as follows

WB(M[Ca])kn,YC [i(Da)n/ — M’Yaén/] v, =0, (3)

whence we derive the detailed form of eq. (1):
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(,yl @ ulol 442 @ ulo? 443 @ M[O3]) DoV +
4 (’YO @ ull £ 42 @ 2 — 43 g M[31]) Dy W
4 (’YO @ ul? 443 @ u — Al p,[u]) DoW+
4 (’YO @ ul £ 4l @ uBl — 42 @ M[23]) D3V

1
-|-/M§ {501 @ wl + 500 @ pl% + sp3 @ % + 53 @ P+

+531 @ BB + 5o @ plt? }\U =0, Sab=YaY> — VbYa

The above equation may be presented shortly as follows
(FODO—|—I'OD0+FODO+FODO—|—iMF>\IJ —0. (4)
It is convenient to multiply eq. (4) by the matrix 71, so we get

(YODO+Y1D1+Y2D2+Y3D3+i/w)\|! —0. (5)
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2 Nonrelativistic approximation

We restrict ourselves to Minkowski space-time model and Cartesian
coordinate. The wave function may be presented in the matrix
form (the first index is bispinor one, the second is vector one)

fo Hh fHh 13

| 9 91 92 g3
Van =1 h m b s | (6)

do di dr ds

We calculate the term
rO\U — le\Uﬁ[Ol] 4+ ’Y2\U,D:[02] + ,Y3WI’I[O3] _

1ds + ho dz— hy —idy — do
—d>r —1hs di + h3 1hy — ho
—fh—igs fi—9g3 191+ 9
ik+9 —fH—g1 h—If

o O oo




whence we derive its 16-dimensional representation (its explicit
form is omitted)

W = the column{fy, go, ho, do; fi1, 91, h1, d1; f2, 9o, ho, db; 13, g3, h3, d3};

the same is done for all other involved matrices.
We can readily prove that the minimal equation for the matrix
ana YO =Yg is
Yo (Yg —1) =0.

Therefore, we can define three projective operators
2 I 1 -
Po=1-Y;, P1=P+=-|-§YO(Y-I-1), PQZP_Z—EYO(Y—l).

They are found in explicit form (their expressions are omitted).
Further we get presentation for three projective constituents

Vo= PV, W,= PV, WV_=P W



% (h+if—g3)
s (3 +91—ig2)
(—ds + h1 + ih2)

2 (di — idz + ha)

1(—ifi +f+igs)
Li(fs+ g1 — i)
2 (i (ds — hy) + hy)
i (dy — id> + hs)

2 (B+91—ig)
s (—h—ifb+g3)
1 (dl — I1db + h3)

g (ds — hy — ihy)

Wl
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o o oo

{5 > (ds +2fi — ifo + g3+ 2hy — iho)
= (2d1 +id> — 3+ 291 + iga — h3)
%(d3—|—2f1 /7‘2—|—g3—|—2h1 Ihg)
- (2d1 +id> — 3+ 291 + iga — h3)
_16’ (ds — f1 + 2ifo+ g3 — h1 + 2ihy)
——I (di +2ido+ s+ g1 +2igo + h3)
—2i(ds — f1 +2ifs + g3 — h1 + 2iho)

—fl (di + 2ido+ 3+ g1 + 2igo + h3)

6( di +id+2f3 — g1+ igo + 2h3)
6(2d3—|-f1—|—1f2—|-293—|—h1—|-lhz)
1( d1—|—/d2—|—27%—gl—|—/gg—|—2h3)

(2d3—|—f1+lf2+293+/71+1/72)
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o o oo

%( d3—|—2f1—if2—|—g3—2h1—|—ih2)
c(—2d1 —ida— 3+ 291+ ig2 + h3)
t(ds — 2+ ifr — gz + 2h1 — iho)
f(2d1—|-ld2—|-f3—291 ig> — h3)

§I(d3—|—f1—2lf-2 g3—h1—|—2ih2)
! (d1 + 2ido — f3 — g1 — 2ig> + h3)
—§/(d3+f1—2/fé gz — h1 + 2iho)
—z2i(d1 +2id2 — f3 — g1 — 2ig2 + h3)

6(d1 idy +2f3s — g1 + igo — 2h3)
%( 2d3 + i + ifa +2g3 — h1 — ih2)
= (—di+id>— 23+ g1 — ig2 + 2h3)
%(st—fl ifo —2g3+ h1 + ih)

@)}
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When performing the non-relativistic approximation, we should
consider the W, as large one, whereas W_ and Wy should be
considered as small:

ID/' << L,’, S,’ << L,';
projective constituents consist of the following variables

\If_|_, {Ll,...,L6}; Vo, {51,...,58}; W_ {Pl,...,P6}. (7)

3 Constraints in big and small components

Let us consider relations which define the large variable L1, ..., Lg:
1 _ .
L1 = g(d3-|-2f1—lfz—|-g3—l-2hl—lhz),
1. _ .
[3 = —gl(d3 —fi+2ifo4+ g3 — h1 +2ihy),
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1 , .
L6 = 6(20'34—f1—|—lf2—|-293—|-h1—|—lh2),
whence it follows the constraint
L1+ 1Ls—Le =0;

and
1 , .
Lo = E(le-l-ldz— fs + 291 + ig> — h3),

1. , .
L4:—61(d1—|—21d2—|-f3—|—91—|-2/92‘|‘h3)’

1 . .
L5:6(—C/1+Id2+27%—91+192+2h3),

whence it follows
L>—1iLs+ Ls = 0.

T herefore, there exist only 4 independent large functions, for
definiteness we will eliminate L3, La:

I.L3= L6—L1, IL4= L5—|—L2. (8)
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Now let us consider relations which determine the constituent
V_ . ... Combing the relevant rows, we derive two identities

(A) P+iPs— P =0,

(B)

P> — 1P+ Ps = 0;

(9)

they provide us with two constraints which will be use below.
Now, let us consider relations which determine the sum od

two small constituent

Vo + WV_ =

Ss + P~
Se + P~
Sg — P

1Ss + P35
1S6 + F»4
1Sg — Py
Se + F5
—S55 + F5
Ss — Fs
—57—F5

0-11

+V1
+ V2
+ V3
aZ!

+ V5
+ Y6
+ V7
+ Vs

+Y9
+Y10
+V11
+Yy12

(10)



From these relations we can derive
Vi+Yys=5Ss5+S7,vo4+ys =56+ Ss,y5+ y7r = i(Ss+ S7),

Ve + ¥s = i(Se + Ss), Yo + y11 = Se + Ss, y10 + y12 = — (S5 + S7);
and

Vri+y3)+ Owo+yi2) =0, (1i+y3)+i(ys+y7) =0,
(vo+va) — (Vo+y11) =0, (2+ya)+i(ys+ ys) =0.

and
Ss —S7 =1 —y3) +i(¥s — y7) — (Y10 — Y12),
3(S6 — Sg) = (V2 — ya) — (V6 — y8) + (Vo — y11).
4 The study of the main system
Let us find 16 equations (5), using the presence of large and

small variables, also taking into account the constraints (8); we
omit their explicit form.
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Further we perform several steps in calculations
1, Divide equations into 8 pairs
2. Sum and subtract equations within each pair

3. When performing the non-relativistic approximation, we
should take into account the separation of rest energy by formal

change
Do = (—iM + Dy) (11)

4. We should tale into account the presence of small variables

of different orders:

D D,
Si~X, Vs~ X,, WONXQ, MJNX' (12)

5. We transform all equations to the new variables

1 1
vi+ys==21, y1—Yy3= =2o,

2 2
1 1
Yo+ ya = 523, Vo — Y4 = 524,
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Vs +y7r==2s, Y5 — Y= =Ls,

2 2
+ 1Z 1Z

Y6 + V8 > 7, Y6 — V8 > 8,
1 1

Yo+ Yyi1 = =Zo, Yo — Y11 = =Z10,
2 2
1 1

Y10 + Y12 = 5211, Y10 — Y12 = 5212,

We derive the six constraints (only 4 are independent):

=21, iZs=—-21, (Z11=1iZs);
Lo =23, Z7=123, (Lo = —iZ7). (13)

After that we can express all independent small components
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through the large ones

Z12

and then substitute these relations into the reaming equations, in
this way we arrive at 6 equations with non-relativistic structure,
and they contain only the 4 large components L1, Lo, L5, Lg.
After that we prove that only 4 equations from Six ones are

<[+

independent.

2iDyLy 4 2iDsls 4+ 2D (Ls — L)
2iDyLo 42Dy (Lo + Ls) +2iDsl¢
—21D3L1 —2iD1Ly —2D>L»
—21D1L1 +2D>L1 4+ 21D3L»

—2D1 (Lo + Ls) +2iDa (L2 + Ls) +2D3 (L1 — L)
2Ds3 (Lo + Ls) +2D; (L1 — Lg) 4+ 2iDy (L1 — Lg)
—21D3ls —2iD1Le —2D>Lg
—21D1Ls +2D>1L 5+ 21D3L¢
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These 4 independent equations are transformed to the new
variables:

\Ul 1 O 0 1 Ll
VY2l |01 -1 O Lo |
V=1w; |20 0 —1]|Ls] (15)
W, 0 2 1 0 Lg
the final 4-component equation is presented in the form
1 e
DoV = —— AW -——(Sff S.F SFf)w; 16
Do XV +3/\/I 123 + 5231 + S3F12 (16)

Do =0y +ieAs, A= (01+ieA)’+ (O+ieAr)?+ (034 ieAs)’.

Three matrices S; obey the su(2) algebra, they may be considered
as referring to spin matrices:

0 -3 0 © 0 —4 0 O

_ -2 0 -1 0 | = X0 —i 0
— 2 — | 2 .
> 0 -1 0 -:['?|0 i o -3
0 0 -2 O 0 0 4 0O
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—-3/2 0 0 O
z. _ 0O —-1/2 0 O
37 0 0O 1/2 0
0 0 0 3/2

5 Conclusion

We have derived the following Pauli-like equation for spin 3/2
particle. The structure of the derived equation definitely indicates
that any anomalous solutions cannon appear, for instance in
presence of external uniform electric or magnetic fields.

The next interesting task is to derive a non-relativistic equation
starting with the tetrad based covariant equation (1). At this we
should allow for that the non-relativistic approximation is possible
(irrespective of the value of spin of a particle) only for space-time
metrics with the following structure:

dS? = (dx®)? + g;;(x)dx'dx. (17)
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A.Ivashkevich, V. Red’kov, A.Ishkhanyan

Spin 3/2 particle in the Coulomb field,
the non-relativistic approximation

In the present paper, we have studied the nonrelativistic
problem for a spin 3/2 particle in presence in the
external Coulomb field. The known general procedure
for performing the nonrelativistic approximation is based
on the method of projective operators. This approach
is applied directly in the relativistic system of radial
equation derived previously for a free spin 3/2 particle
for states with the spherical symmetry within the covariant
tetrad formalism. T he system of two 2-nd order differential
equations describing the nonrelativistic particle has been
derived. Solutions of radial equations have been constructed
in terms of confluent hypergeometric functions, the
corresponding energy spectra are found.



1 Separation of the variables

The basic equation for a spin 3/2 particle used in [5], has the
form (it is equivalent to the known Rarita - Schwinger equation

[3])
7 (v @ ull 4 42 @ pl? 4 43 @ plol) iDews

4y (’YO @ ul3 44l @ uBl — 42 g ’u[23]) iDsW—

—’YSM{Sm R ulP + s0o @ wl® + 505 @ wlo!

+53 & M[23] + S31 & ,Uum] + S12 & M[12] }W =0,

where v?,v> denote the Dirac matrices, S.p = Ya2Yp — YpYa, SQUAre
brackets stand for the antisymmetry, symbol & designates the
direct product of the matrices; the wave function is presented
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as a matrix with two indices, the first index is bispinor, and the
second is vector one. The system of equations refers to the cyclic
basis (in which the 16-dimensional generator J'? is diagonal,
expressions for operators D, will be given below. Six u-matrices
are defined by relations

O 0O 0 O O 0 O 0
o1 1 ]10 0 —-i O o2 _ 1100 -1 0
o 0O —i 0 —j |'FP 01 0 -1
2 2
V2 O 0 —i O V2 O 0 1 0
O O 0 O O —1 0 1
3] _ |0 —/ 0 O 3y _ 1 | -1 0 00
H’SP T O 0 O O :u’Sp — \/§ 0 0 0O 0
O O O 1 1 O 0 O
O —1 0 —i O 01 0
[31] _ i i1 0 0 O 2] |0 0 O O
/J'S,D _ \/§ O O O O /J'sp - 1 O 0 O
I 0 0 O O 0 0 O




This Equation was considered [5] in spherical coordinates x% =
(t,r,0,¢) and corresponding tetrad [6]. For components of the

operator D, = f‘c)@a + %(a”’” Q141 ® ") Ynmjc explicitly read

1 1
Do=08;, D3=08,, Di==8+=-(c"x+12,),
r r

1 _ 10y +cosO(c? @1+ 1 ® '
Dy==(cPQ1+ 12 +=-=2 ( _ ),

r r sin 6
where g%, j3b define generators for the bispinor and vector representations
respectively.

The substitution for the wave function has the form [7, 8]

foD_1/0 HD_30 H©D_1 D)y
_ et | 9oDy10 91D_1p5 g2Di1p 93Dz

V=Yan =€\ WD s mD_sp» hD_1jm hsDirpp |@

doDy1p diD_1/0 doDiqyp d3Dizpo

here we use the Wigner -functions, D, = Dj_m,a(d),G,O); J =
1/2,3/2,5/2,... . This substitution contains 16 radial functions
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0. From requirement of diagonalization of the space reflection
operator [8], we derive the following restrictions (where 0 = £1):

do = 0fyg, dh = 0fz, do = 012, d3 = 017,

ho = 09go, h1 = 093, ho = 09>, hs = d91;
so only only 8 independent functions are preserved:

foD_1/0  HhD_30 FfD_1p D)

W — 90D+1/2 g1 D—1/2 92D+1/2 93D+3/2 (2)
090D_1/2 093D_3/0 092D_1/ 091D41/0 |-
0foDi1/0 0BD_1p 0fDi1p 0f1Di3

Using the known relations for the Wigner functions [7],

1 1
Og Diq)0 = 5(3 D_1/0—b Di3/5),00 D_1/p = §(b D_3p—aDiqp),

1 1
O Diz/0 = §(b Di1jp—¢ Dysp), 0O D_3/p = E(C D_sp—b D_1),
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1 1 1
—(—m — 5 cos0)D 15 = 5(—3 D_1/o— b Dy3)2),

sinf
1 1 1

m(—m -+ 5 COS G)D_l/z = 5(—19 D_3/2 — d D+1/2)’
1 3 1

ﬁ(—m ~3 cos0)D3/p = 5(—b Di1/2— ¢ Dyspo),
1 3 1

ﬂ(—m + 5 €OS 0)D_3/p = 5(—C D 5/ —bD_y),

a=j+1/2, b=+(-1/2)(+3/2), c=+(—-3/2)(+5/2),

after separating the variables, in [5] where found 8 equations (the
equations for states with opposite parities differ only in sign at
the mass parameter, so we follow only the case 6 = +1; radial
equations for states with opposite parities differ only in sign at
the mass parameter M)

d 1 3 1 .
V2—agi+=(fh+——=g1)+—(bfi—afs+av2g)+iM(go—V2f) = 0,
dr r V2 Dr
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d 1 3 1 |
\/557634‘7(924‘7f3)‘l‘—(_agl+bg3—|—a\/§fz)—|—IM(\/§g1—fz) =0,

d
—Jefy + d—fl + — fl

\/_r(be + bfy) +iMgs = 0,

_/e(\/§f2 — gl) + (—\/zafo + Egl) — F(E(ﬁ) B fz) o 91)
1

—|—E(agz —ago) — iM(fz + vV2(g0 — g2)) = 0,

| 1 1 1 |
—ievV2g1+=(fo——=g1)+—=(—bAi+af+av2go)+iM(V2f+go) = 0,
r V2 2r
1
—/eff3+r(go+7f3)+—( ag1+bgs+av2fy)+iM(v/2g1—f) = 0,

—/6(\/592 — f3) + (—\/5590 — EfS)
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1,1 1
——(—=(g90 + 92) + 3) + 7(—37‘-2 — afo)+

ro\/2
+iM(V2fy + V26 — g1) =0,
. 1 1 .
—i€gz — —gs — —gs + —(—bgz + bgo) + iMfy = 0.
dr r 2r

Large and small components, projection
operators

EXxists the method for performing the nonrelativistic approximation
in equations for spin 3/2 particle in Cartesian coordinates [4]:

[roao Ty + iT26, + iT305 + /Mr] weart — . (3)

After changing notation, this equation is written as

[Yoﬁo + Y101 + Y28, + Y385 + iM] pert = 0. (4)
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On the base of 3-order minimal equation for the matrix Y©, three
projective operators are introduced which allow us to decompose
the wave function into the sum of three components: one large
and two small. In order to apply the same method in spherical
coordinates, we need explicit form for three matrices

yO r—er, ro— ,Y5 (,Yl R “[01] _|_,Yz R M[oz] —I—’Y3 R 'UJ[o:a]) |
= ’Y5{501 @ uo + s0p @ pl%? + 53 @ ul®!
+503 @ w4 531 @ plB + 515 @ !t }
representations for the wave function and the matrix % are

W = {fogohodofig1hidifogohod>f3g3hsds}

Its minimal equation is YZ(Y7 — 1) = 0, we can introduce three
projective operators

1 1
Po=1-Yy, Py= +5Y02(Yo +1), P = —53/02(\/0 = 1) (5)
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with the properties Py + Py + P- =1, = Ry, P2 =Py, P2 =

P_. The explicit expressions for these operators are needed ...



OO | O | O |

o OoOoo

2 (A + h)
(di + V2 + g1 + V2h)
= (A + h)
(v +V2f + g1 + V2ho)
V2di + 2 + V291 + 2ho
2d> +V/2f3 + 292 + V2h3
V2di + 2f + V291 + 2ho
2> + V23 4+ 29> 4 V/2h3
£ (V2do + 3 4+ V292 + hs)
2 (ds+ g3)
: (V2do + 54+ V292 + hs)
2 (ds + 93)

|~

N NN TN
N N e
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6
(=V2di + 26 + V291 — 2h2)
(—2d2 4+ V2f3 + 29> — V/2h3)

O O oo

5 (A —hi)

(—dh + V2f + g1 — V2hy)
5 (1 — 1)

¢ (dh —V2fh — g1+ V2hy)

(\/zdl — 2f, — /291 + 2/72)
(2d> = V2f3 = 292 + V2hs3)

(—v2d> + 5+ V29> — h3)
5 (93 — )

£ (V2do — f5 — V292 + hs)
2 (ds — g3)
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As known from the general theory, the component W, should
be considered as the large one, and two other as small, P <<
L, S; << L,. Three projective constituents consist of following
variables

Vo, A{Li,....Le}, Wo, {S1,....Ss}, Vv_, {~, .. B}

Since the initial wave function contains 16 components, we should
expect existence of 4 restrictions.
After preserving only independent variables among L , P, S |
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and taking into account parity restrictions, we obtain

Ws—i1 =

fo
9o

51
5o
+ 55
+5;

L1+ w1
Lo+ yo
L1—w1

Lo— Yo —V2ys — V25

V2L0o + y4
V2Lo + ys
V20o + ys
V20o + ya

Lo—yo —V2ys — V25
+L1— w1
Lo~ yo,
+L1+wn
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V2L0o + y4
—V2Lo + ys
V20 — ys
—V2Lo — ya

—Lo+ yo +V2ys — V25
—Li14+w
—Lo — yo,
—L1— w1

0-15




Further, we can pass to truncated 8-component columns (recall
that when separating the variables for states with fixed parities,
two systems of 8 equations were derived; and they differ only in
sign at the mass parameter)

fy 2
go 2
L1+ w1

f 1

o Lo+

9 L1— w1

3 Lo—yo —2ys — V25

Vs — — ,

o=+l f V2Lo + y4

go V2L + ys

g V2Lo + s

f2 V20Lo 4 4

E Lo— o —2ya —\/2ys

g3 +L1—Wn
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fy 2
gdo 2
L1+ w1
f 1
o Lo+ yo
g3 L1— w1
£ Lo—yo —2ys +V2ys
\Ij 1 = o )
o=-1 f V20o + y4
g2 —V2L5 + ys
—92 V2L — ys
—1 —V2Lo — ys4
E —Lo+yo +V2ys — V25
93 —Li1+wn

The truncated 8-dimensional column (it is composed of functions
included in the 8-dimensional radial system) turns out to be the
same (the difference for the parity will be only in sign at the mass
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parameter). The inverse transformation has the form

1 1
[1 = §(fl +93), Lo = 6(\/57‘2 +f+ g1+ V2g), S1 = f,

1 1
5> =00, y1 = E(fl — 93),)/2 — 6(—\/57(2 — 3 +5g1 — \/592),

1 1
V4 = 6(47‘2—\/57‘3—\/591—292),)/5 = g(—2f2—\/§f3—\/§91+492)-

We turn to the system of 8 radial equations (the presence of
external Coulomb field is taken into account by formal change

E = E 4+ o/r), and substitute expressions for functions through

independent large and small components.

Then, we should separate the rest energy by the formal change

e = (M+E), E << M. Besides, when performing the no-relativistic
approximation in the resulting radial system, we should follow the

known prescriptions [4] for smallness orders of various quantities

1 d 1
L ~1 y~x, S~Xx, ——~X, — ~X,
M dr riv1
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1 1 d? E 5 d
rM ~ — f——— ~ X — ~Xx°, reE~x, r—n~1.

X' M dr? M dr
Then, after rather long manipulation with the radial equations,
in order to correctly take into account existence of large and small
variables, and eliminating the all small variables, we can derive

two differential equations for two large variables L1, Lo:

d?2 2 d 17,5
[ _|____|_2M(E-|-—)] [1 = — > [b L1—|-3bL2],

dr? rdr
[d2+2C1+2MG3+ ﬂL
dr? rdr °
2 3 b? + 10
_ 2[ a(a+3)+ b=+ L2—|—bL1].
r 3

T he last system, after performing the relevant linear transformation
— SL, can be reduced to separate equations for new variables

1, Lo:

I\I I

¢ 2d +2)2—1/4
[——+——+QM@+—Q—U S 1/
dr? dr r?
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d> 2d j2—1/47 -
9 LomE+ S - ]L —0. (7
[a’r2 + rdr * ( ) r ° (7)
These equations are solved in hypergeometric functions, they
provide us with two energy spectra (let 2Br = —x)
oM oM _ |
E> = — = — [o=/r"Y2e V2MErp(_p 2j41, x).

2N? 2(j—|—%—|—n)2’

p) p)
oM oM _
Ep = — > — T 5/ .5 > L
2N 2(J + 5T n)
The initial variables L1, L, are determined by the rule L =
S—1L, and they explicitly read

pH32e=V=2MErE(_p 2j45 X).

. 1. - , 1. - _ _
Li=(b"—j"+ DL+ (b> = (+2)°+ )L Lo = bLy + bla.

The non-relativistic wave function with quantum numbers of
the energy, square and the third projection of the total momentum,
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and parity is given as

Li(r) D, _5,,(¢.6,0)
Lo(r) D', ,($,6.0)
oLa(r) DL, ,(#,6,0) |
oL1(r) D ,5,,(#,6,0)

Ve imes(t,r,0,¢)=e 't §=41. (8)
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Non-relativistic Approximation for a Spin
3/2 Particle, in Electromagnetic and
Gravitational Fields

1 B.I. Stepanov Institute of Physics of NAS of Belarus

2 Institute for Physical Research Armenian Academy of Sciences

T he starting relativistic equation

The generally covariant equation for a spin 3/2 particle may
be presented the local tetrad form

v (1), Mve [i(Da),' = MYa0,' ] W =0, € = (ule), ",

where generalized derivative are used
1
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Large and small non-relativistic components

The wave function may be presented as a matrix (the first
index A is bispinor one, the second (n) is 4-vector one)

fo 1 f £

0, | 9 91 G2 g3
AM =1 hg hy hy hs
dy di dr ds

We will present the complete WV as a 16-dimensional column.
It is convenient to present the main equation in the matrix form

(YODO YD +Y2Ds + Y3Ds + i/\//) =0
In accordance with the known general approach, the large
and small components in the non-relativistic limit are determined

by projective operators constructed through the matrix YO, This
matrix Yo obeys the minimal 4th order equation Y7 (Y7 — l1s) = O.
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Correspondingly, there exist three projective operators (they are
found in explicit form)

Po = l16 — Yg,
Lo
Pr= Py = +§Yo (Y + l),

1
P, =P = —5»/02(»/ — I16)
with the needed properties
Po+Pi+P.-=lhe P:=P, PP=P, P;=Ps.

We find three projective constituents (in each we can see a
number of independent variables):

\Uo — PQ\U, \|f+ — \Ul — Pl\lf, V_ = \UQ — PQ\U;



9o
ho
do
IO, (fl /f2 93)
s (3 + 91— ige)
%( ds + hi + iho)
z 5 (di —ida + h3)

3 (_Ifl + f2 + 193)
—/ (s + 91— igo)
3, (/ (dzs — h1) + h2)

—I (dl

id> + h3)

2 (4 91— ig2)

L ( fl
> (ch —

if> + 93)
id> + h3)

% (d3 — hl Ih2)
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o oOoo

(—ds+2f —ifo+ g3 —2h1 + ihy)
(—2dy — ido — 3+ 291 + ig> + h3)
1%(a’g,—Qﬁ—I—I'f2—93-|-2/71 — iho)

¢ (2di +ido+ 5 =291 — iga — h3)

Li(ds+ fi —2ifr — g3 — h1 + 2iho)
%6/ (d1+2id — 3 — g1 — 2ig2 + h3)
—ll.(dg, + fi — 2ifo — g3 — h1 + 2iho)

—g{j/(dl +2id> — f3 — g1 — 2ig2 + h3)

% (di —ido+2f3 — g1+ ig> — 2h3)
(—2ds+ i+ ifo +2g3 — h1 — ihy)
(—di+ido —2f34+ g1 — ig> + 2h3)

%(2d3— fl—/f-2—293‘|‘h1‘|‘/.h2)

=0y |~

6

-

Ol |
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o OoOoo

{5 L (ds +2fi —ifo + g3+ 2h1 — iho)
= (2d1 +id> — 3+ 291 + iga — h3)
% (d3—|—2f1 If2—|—g3—|—2h1 IhQ)
= (2d1 +id> — 3+ 291 + iga — h3)
—§I (d3 — f1 + 2ifr + gz — hi + 2Ih2)
——l (di + 2ido + 5+ g1 + 2igo + h3)
—2i(ds — fi + 2ifs + g3 — hy + 2ihy)

—fl (di + 2id>+ 5+ g1 + 2igo + h3)

6( di +id>+2fz — g1+ ig> + 2h3)
= L (2d3 + fL 4+ ifo + 293 + hy + iho)
1( ch + idh +2f3 — g1 + ig> + 2h3)
(2d3—|—f1—|—lf2—|—293—|—h1—|—/h2)
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While performing the non-relativistic approximation, we should
consider W, as a large component, and W_, Wy as small ones:
P << Lj,§ << Lj; in total we have the following 20 variables:

Vi, {L1,...,Le}; Wo, {S51,....Ss}; V_, {P, ..., B}
1) There exist constraints among the large and small components:
iIL3=1Le— L1, 1La=Ls+ Lo;
Pr+i1Ps—Fs =0, P> — 1Py + P =0.
With new variables yq, ..., Vi2o:
Ss+Pi=y1, Se+P=y, St—Pi=ys Ss— P =y,

1ISs + Ps=ys, 1Se+FPa=Ys, 1S7—Ps=y7, 58— Py=ys,
Se+FPs =y, —S5+F =y, Ss—F =y11, —5S7—Fs = yi2.

the four variables Ss, Sg, S7, Sg may be expressed through 12 y-
variables.



T he non-relativistic approximation
The non-relativistic approximation is possible only in space-
time models with the following structure

1 o |
0 eik(x) |’

for these space models only four connections differ from zero

1 Ik .m _ 1 Ik .m :
20 = 5 J () (Voe(k)m), 2 = 5 J €(j) (V/e(k)m) : (1)

d5% = (dx°)’ + gy (x)dx'dx’,  e(palx) = |

and the contribution of three generators J°!, J92 JO93 js absent.

T he basic matrix equation in the nonrelativistic metrics for a
spin 3/2 particle has the form

(YODO+Y151+Y252+F3D3+/M)w:o, (2)

where



Do = (80 + ieAo) + (6 @ I + 1 @ j) Y30+
+H(O @ 1+ 1® 7 )Va10 + (02 @ 1 + 1 & 7)Yz,
D; = e(kl)(ak +ieAx) + (02 @ | + | ®j23)’}’[23]1+
+(0 @1+ 1@ )vpm + (0 @1+ 1 7)o,
D, = e(kQ)(ak +ieAx) + (0= @ | + | ®j23)’}’[23]2+
+H(E' @ 1+ 1 @)V + (012 @ 1+ 1@ )Yz,
D3 = (8k + ieAx) + (023 ® 41 ®_/'23)’Y[23]3+
+(@ @1+ 1@ )Yz + (02 @ 1+ 1@ )Y

We will use special notations for the needed 12 Ricci coefficients
Gio = Y230, G20 = Y310, G30 = Y120,

Gij = Yo3j, Go1 =7y315, G311 =710, 1=1273.
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In the basic equation one can distinguish two parts:

(YODO YD+ Y2Ds + Y3Ds + /M)w —0

QO\U — YO
Qlw — Yl
QQW — y2

Q3\U — y3

(YODO YD+ Y2Ds 4+ Y3Ds + /M) at

+ (Qow QW+ QW+ Q3w) —0,
Do = (8o + ieAo), D1 = ef,(Ok + ieAy),
Dy, = e(kQ)(@k + ieAk), D3 = (6k + /eAk)

(0BWAUT3)Gro+ (0 WA W) Goot (0 PW+WT12)Gao |
(0 BWAUT) G+ (0 WU Gy + (0 PU+W]12) Gy |

(0B VW2 Gro+ (o W4V PN G+ (o 2V 1) Gas |

(0'23\U—|—\U_723)G13—|—(0'31\U—I—\UjSl)G23—|—(O'12\|f—|—\|f_712)G33 .
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After performing the needed calculations, taking in mind decompositions
of all components into large and small parts, we derive 16 rather
complicated equations; we omit them ...

It is known, that when performing the non-relativistic approximation,
we should assume the following smallness order to the involved
quantities

D, G
L ~1, S, y ~X, —~X, — ~X,
M M
D G;
_0 ~U X2, _J ~U X2,
M M

in the following we will need only equations of orders x un x2.
Taking this in mind we divide equations of order x and order x2.

Equations of order x permit us to express the small components
of order x through derivatives Dg, D; , acting on the large component
L1,L>, Ls, Lg and the Ricci coefficients. Substituting these small
components into equations of order x?, we derive six equations
with respect to 4 independent large variables L1, Lo, Ls, Lg; they
contain the terms 2MDgoLs, A=1,2,,5,6.
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In can be proved that only 4 equations of them are independent,
further we will work with these four equations.

They are rather complicated, by this reason we temporally
remove all term containing the Ricci rotation coefficients (thereby
we effectively turn back the the case of Cartesian coordinates in
Minkowski space).

Further, we transform this system of 4 equations to other
variables

Vi=Li+Les, Vo=Lo—Ls, WV3=2[1—Lg, W4=2L>+Ls5;

in this way we arrive at four equations.

With the following notations
DoD3z—D3Dy = Do3, D3D1—D1D3 = D31, Di1Do—DyD3 = Dso,

A = (D1D1—|-D2D2—|—D3D3), Do = Og+1€eAo, Dj = e(’j.)((’_?k—kieAk).
they read

0-11



1
MI.DO\Ul -+ EAwl
1 1 I

/ /
— =DV — D31 Wy — — DoV — DoV — DoV
5 12 1+2 31Wo 5 23 2+3 12 3—|—3 23Wy +

1
MiDoW-> + EA\UQ

/ 1 I / I
+—=D1pWVo — =D31WV; — =Do3Wi + +=Do3W3 — §D12W4 + ...

§ 2 § 3
1
MiDgoWs + EA\V3

I 1 I 1 I
— D>V — D31 W — D3 Wy — —D31 Wy — — Doy
—I—2 12 3+3 31 2+3 23Wo 5 31 Wy 5 23Wy +

1
M/.DO\UAL -+ EA\U4

2
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This system may be presented in the matrix form

Wy
) . 1
WV = \U:23 /MDo\IJ—I—EA\IJ+(51D23+52D31—|—53D12)\|!:O,
Wy
/ 3
L O —1 O = 0 O O
_ | 2 , N
21 0 —i 0 1 2= 1 o0 -
é 0O —i 0
O —L£ 0 /
- 2 .
3=|g o -2 0
o 0o o 2

they obey the needed commutators 515, — 5,57 = S5, ...
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By using a linear transformation we determine new spin matrices

0 -1 0 o 0 -4 0 0
- -2 0 -1 0 - 20 —i 0
21 0 -1 0 =32/ 22 o i 0o -2

0 0 —3 O 0 0 5 O

—-3/2 0 0 O
z. _ 0O —-1/2 0 O
37 0 0O 1/2 0
0 0 0 3/2

Performing the similar calculations now with the presence all
terms with Ricci coefficients, we arrive at the complicated system
of 4 equations, it may be presented in matrix form

2M (Do 4+ Ap)V + (S1D23 + SoD31 + S3D1o) W+
+(D1A)V + (A1 + B1) D1V + (D2A2)V + (A + Bo) Do W+
+(D3A)W + (As + B3)DsW + AW = 0.
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The matrices Ap, A1, A>, Az and By, B>, B3 depend linearly on 9
Ricci coefficients; the matrix A depends on the products of Ricci
coefficient G X G .

In turns out that all these matrices may be decomposed in
linear combination of 9 independent 4X basic elements (spin
matrices and their products)

51

Si=t;, Ss=1ts5, S35=t,
5:53 =1t7, 5351 =1, 515 = to,
Similar decompositions exist also for the matrices Ay and A.
These additional geometrical terms depend on the Ricci rotation

coefficients G,p, the Ricci scalar R(x), and the tetrad components
of the Ricci tensor

t1, So=1t, S3=ts,

Rag(X) = R(x) = eg)efb)Raﬁ(x).
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Example 1:
the particle In electric and magnetic fields

Cylindrical coordinates x* = (t, r, ¢, z),

1 0 0O
0 1 0 O
dS? = dt®> — dr? — r’d¢® — dz°, ey = 0 0 % 0
0 0 0 1

—t

0 —=1t, 1l —=r, 2 — o, 3=z, Yoo = —,
r

1
Do = Op+1€eAy, D1 = 0,+1eA,, D> = —(@¢+/€A¢), D3 = 0,+1eA,,
r

Let us consider the presence of uniform magnetic and electric
fields along the exes z;

. 1 - Br?
Do =0: +ieEz, Dy =0, D> = —(6¢—|—/e7>, D3 = 05,
r
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0?2 1 ieB \ 2 0?2
po=0. a=2 ¢ (to, 1B 2
0 8r2+ r¢+ 2r +822

D>3 =0 D31 =0 D1, = L (8 ' r2)
— 7 — 7 — — = - Ie— 1]
23 31 12 P b 5

The basic Pauli like equation reads

_ 1 [ 6° 1 ieB \2 0%7-
' eEz)V = — [ (—a — ) —]\u
i(0: + ieEz) siilae T (0t —r) + 5|V

i1  Br?\ - -
+an7 (00— ie ) S0

I _ _ _ _ - 1 Br?
—— 1 (0,A1)+ (A1 + B1)o, + (A> + B —(6 +'—>—|—
2M[( 1) + (A 1) (A 2)r T 1€ 2

+(As + B3)o, + i] V=0
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The involved matrices are

OO oo

O o0

o —0O0

o O OO

o O oo

O o0

O— OO

o O OO

A3z + B3z =0,
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This structure means that the non-relativistic equation in
cyclic basis consists of 4 unlinked equations with similar structure,
so the Hamiltonian is rather simple one.

Example 2:
Particle in the Coulomb field

Let us consider the case of spherical coordinates x* = (t, r, 9, ¢):
dS? = dt* — r*d6* — r*sin“ 0d¢* — dr? o) = (1,0,0,0),

1
ety =(0,1,0,0), f,=(0,0,-,0), e} = (1,0,0,

rsiné

O 0 0 O 0 0 0 0

o 0o o -1 0 0 +=¢ 9

Yabl = O 0O O Or y» Yab2 = 0 — coté 0 1
r

0 ++ 0 0 o o0 +% o0

_|_
O=—t, 1=86, 2=—¢, 3=r i(Dot+ieAy)) — (E+g),
r
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1 1 1 1
= —Op, D> = O4, D3 = 0, A= —8? 82+c’92
LT 7 rsing ? ? r2 9+r2sm2 o
T he Pauli-like equation reads
1 O
YW= [62 62 —} W
(e + ) 2M * + 0z2

;

2M
1

-|—7(A1 + B1)0y +

[ (0gA1) + 0+ (03A3)+

T (A> 4+ B2)0s + (As + B3)0, + Z] v,

where the involved matrices explicitly read

—9cot 6 6 0 0

A I —6 — cot6 8 0

L= 0 —8  —coté 6
0 0 —6 —9cotf
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I
arA?) — _ﬁ

Ocotb —6 0
—6 3coth —8
0 —8 —3cotb
0 0 —6
—6 cot b 0
OQcotf —14 —2cotb
0 2cotb —14
0 0 — cot 6
(89/41) = ..., 8¢A2 —= 0,
—6 cot o 0
OQcotf —14 —2cotb
0 2 cotb —14
0 0 —coth
3coth —2 0
—6 —5coth 0
0 0 —5cotb
0 0 2

0-21

—9coth

0
0

—06

0
0
—9Ocotb
—6

0
0
—9coth
—6

0

0

6
3cotb




3coth 2 0 0
B, _ 11 —6 cotf 0 0
27 0 0 —coth —6
0 0 2 —3cotfh
| —6 —cotf 0 0
5. — ! —9 cot 6 2 2 cotf 0
3T, 0 —2 cot 2 9 cotf
0 0 cot 6 —6
—3cotb 2 0 0
/ —6 —3coth 4 0
Art+ B = r 0 —4 —3coth 6
0 0 —2 —3cotb
3cotf —1 0 0
—3 cot 6 —2 0
Azt Br = P 0 —2 —cotf —3
0 0 —1 —3cotb
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A3z + B3

3i (3 cot’ 0 — 4)
—36/cot b
0
0

-2 0 0 0
o - 9 0 12/
' 12] = ——1
o o o -—¥
3
Z — ﬁx

—4/cotb 0 0
i (co’c2 0 + 12) 8/cot 0

—8icoth i (cot2 6 + 12) 36/ cot 6

0 4icot6 3i (3cot?6 — 4)
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