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Plan of the talk

Introduction. The study of Fractal structures in the stellar medium of the Galaxy
Goal of this work
Concept of “fractal" and "fractal dimension”

Main stages in the development of ideas about the fractal structure of the
stellar medium of galaxies. Law of Carpenter-Vaucouleurs

« Mandelbrot interpretation and introduction of “fractal dimension”

« The results of numerical calculations of mean stellar density and fractal
properties of 200,000 stars in the solar neighborhood

« Estimation of the effective interparticle spacing for the fractal star medium

« Estimation of the impact parameter and correlation length for the studied
fractal stellar medium

 Estimation of the coefficient of dynamic friction for the fractal star medium
- Estimation of the relaxation time for the studied fractal stellar medium

* Conclusions



constructing internally consistent and more appropriate to

observational data kinetic theory of the stellar medium
(the kinetic parameters of fractal stellar media differ significantly from the corresponding
parameters for quasi-homogeneous medium with limited density fluctuations)

refining basic equations of stellar dynamics for fractal stellar media

— to estimate the kinetic parameters of the fractal
distribution of 200,000 stars of all spectral types in the solar
neighborhood at a distance of 1 pc to 100 pc from the Sun from
observational data of the “GAIA” telescope (DR2, 2018)

The fractality of the structure of stellar medium at distances from 1 pc to 200 pc
from observations of :

young population of galaxies (Efremov and Elmegrin, 1998; Elias et al., 2009;
Elmegrin et al., 2014)

F, G — type dwarf stars in the solar neighborhood from observational data of the
Geneva—Copenhagen Survey (Chumak and Rastorguev, 2015)
* Interstellar gas and dust clouds (Larson, 1981; de Vega et.al, 1998)



Concept of "fractal" and “fractal dimension"

‘Fractal” means fractional, broken, - Mandelbrot called so self-similar

geometric figures, each fragment of which is repeated when the scale IS

reduced, (Mandelbrot, 1988). ik

Benua Mandelbrot — the founder of fractal analysis

who introduced the term “fractal’

— the figure has the property of scale invariance —
IS the first basic property of fractal objects

Fractal dimension — is a measure, how the object fills

the space of embedding Benuaandelbrot

logN(a) 1924 - 2010
= lim
a~0log(1/a)

“ .

“ Fractal dimension

a — scale unit; N — number of scale units, covering the objects;
D — fractal dimension.

If such a limit exists and the value is a fraction, then this object is a
fractal — is the second basic property of fractal objects



The main stages in development of ideas about
fractal structures in stellar medium of galaxies

Carpenter (1938), Vaucouleurs (1970): number density of galaxies In
cluster decreases with the growth of characteristic cluster sizes according to
the fractional-power law

n(r)~ N/r3~r-17

N — number of galaxies in cluster; r — size of cluster; n — density of galaxies in
cluster

- galactic medium is arranged hierarchically; any observer, included in the
hierarchy, will find that the mean density around him decreases with
distance; - any large identical volumes have the same mean density,
regardless of the position of their centers relative to each other.

Mandelbrot (1988) interpreted results by Carpenter and Vaucouleurs as a
special case of stochastic self-similarity of three-dimensional random fractal
sets for which the relation holds:

n(r)~r«

r — characteristic size of the increasing volume around observer included in
hierarchy; n ( r) — invariant conditional density ; & — exponent

D =3

|f'ﬁ'1
|.I|I Y

D —is fractal dimension D=3—«a 0




The results of our calculations of spatial distribution and
fractal properties of 200 000 stars in solar neighborhood
from data of "GAIA" (DR2,2018)

200,000 stars of all spectral types at distances from 1 to 100 parsecs from Sun

Mean star density n (r) in spheres of radius r around the stars is approximated
by power laws of the form:

n(r)= hr ¢

whereh=1,654; a=0,586; D=3-a=241
n(r) = 1,654 r0°86

This law confirms the conclusions by Vaucouleurs and Mandelbrot for fractal structures
in gravitating media
Mean stellar density vs. radius of the sphere around the stars

ten

X-axis: r in parsecs (pc), Y-axis: stellar density n in pc3. .
Red line — 200,000 stars of all spectral types . \\
at distances from 1 to 100 parsecs from Sun
Blue line — 13,000 F, G — type dwarf stars

at distances from 1 to 20 parsecs from Sun from
observational data of the Geneva—CopenhagenSurvey "¢ .. .. .. .. ....... % .. .. ... 1_.

0.6 0.8 1.0 1.2 1.4 1.6

(Chumak and Rastorguev, 2015), h = 1,644; o = 1,769; D = 1,23;




Estimation of the effective interparticle spacing for
the fractal stellar medium in the solar neighborhood

The important kinetic parameter in stellar dynamics the effective interparticle
spacing r ,, for fractal medium is derived from the distribution law of the
distance to the nearest neighbor (Chumak, Rastorguev, 2015) :

4th
w(r)dr = 4mhexp (— TT’D) r?-ldr

w (r) — the distance distribution caused by the nearest neighbor in a spherical layer
of radius r and thickness dr; -

A-priory: Ty = f rw(r)dr

’ VD 'p+1

-2

D\4mh D

Coefficient h = 1,654; fractal dimension D = 2,41 were taken from our
calculations for 200 000 stars: r,, = 0,49 parsec

3/ D
Then, the effective interparticle spacing: Yy, = ( )

Traditional estimations of the effective interparticle spacing for homogeneous
stellar medium: r_, = 1,06 — 1,16 parsec, that is two times more

This result is consistent with result for F, G — type dwarf stars in the Solar vicinity
from observational data of the Geneva—Copenhagen Survey: r., = 0,48 parsec

(Chumak, Rastorguev, 2015)



Estimation of the impact parameter for the fractal
stellar medium in the solar neighborhood

Geometry of paired star encounters

mumg — the masses of the test star and
the field star,

—=5

IV u V' -the relative velocities of the test star
before and after encounter,

- the impact parameter — the distance
) ¢ between the fixed star and the asymptote

m of the velocity vector of the test star
before the encounter,

— the angle of deviation of the relative velocity vector of the test star, the magnitude
of its relative velocity (the test star) remains constant according to the law of

conservation of energy: V = ‘V ‘
Thus, the result of the encountei will be a change in the direction of the relative velocity

vector, associated with its rotation.




The relative velocity vector of the test star deviates by an angle y/, which in the
framework of the two-body theory (Ogorodnikov, 1958):

]][J_G(ﬂl+ﬂlf)_pl
2" vp T p

where G is the gravitational constant, p is the impact parameter of the paired
encounter, at which the vector of the relative velocity of the test star is deflected by
an angle of v ==/2 (close encounter):

G(m + mf)
pJ_ - V2
26m
For m =m;: P, = V2
According to the virial theorem the velocity of test star:
2 o GNm
r

where N — the number of particles in the system, I — the size of the system.



Expressing the number of stars through the density n, we obtain for
a homogeneous stellar medium:

_ 3
PL= 2nir?

For the fractal stellar medium we obtain:
3?11—1)

2th
This formula under D — 3, h — n takes on the classical form of uniform medium

P, =

Thus we obtain the relationship:

Pifr = h_lnr(g_ﬂ)pi

To estimate the impact parameter we use the correlation length?”o from formula
for the fractal stellarlmedium (Davis and Peebles, 1983): n(ry) = 1 pc3.Then:
ro = h D-3 . For 200,000 stars in Solar vicinity 1, = 2,35 parsec.

Then under r =1, : Pirr=01p,

Thus the impact parameter for fractal stellar medium is ten times less than for the
homogeneous stellar medium



Estimation of the dynamic friction coefficient for the
fractal stellar medium in the solar neighborhood

Dynamic friction is determined by the paired encounters of stars
We consider the flow of test stars flying into fixed stars of the field, then
as a result the test stars will acquire transverse velocity components,
and the average flow velocity will decrease. Consequently, in the end,
encounters lead to the spreading of the flow of test stars in the transverse
direction (relaxation) and the deceleration of the flow (dynamic friction).




The coefficient of dynamic friction can be approximately estimated by the formula
(Chumak and Rastorguev, 2017):

8nG*m’ninA
V3
where A = In(p,,a/Pmin) is the Coulomb logarithm, m — mass of test star and

field star, N — density of field stars, P..i» = P Is the impact parameter of close
encounter , Pmaqx IS the upper limit of the impact parameter for distant interactions

a-=

(inour case P.nax = 27, ), V — relative velocity of test star before encounter
For the fractal stellar medium:
8nG*m*hlin A
a=x TE r
For approximate estimates of the value of @, one can use the above-mentioned

D-3

"correlation length" r:

8mG*m°hinA s
V3 L

ag = a(ry) =




Estimation of the relaxation time in the fractal stellar
medium in the solar neighborhood

* The state of dynamic equilibrium in stellar system disrupted

* Increments in the velocities of the stars under the action of irregular forces reach
the values of velocities themselves.

* Irregular forces provide collisionality in stellar system, arise during stellar
encounters, act as small perturbations during star regular orbit motion

. The main paradox of classical stellar
Classical stellar dynamics

dynamics -» the very large relaxation
was constructed as stellar ‘ time for most stellar systems, which
dynamics without stellar significantly exceeds the age of the
encounters system

* From formula for the characteristic deceleration time of a test star as a result of
dynamic friction in the fractal medium we obtain:
VS

relir — 8wG2m2hin A

V3
rel = 8nG‘mninA

For a homogeneous stellar medium (D—3;h—n) — T



From these last two expressions we obtain the relationship:

T =nh 1rGDg

rel fr

Substituting the parameters defined above for the solar neighborhood into
this relation and assuming that? = 1, , we obtain

Tre!fr = 0! Oggrrei

Thus, the relaxation time for a fractal medium is approximately ten times
shorter than for a homogeneous stellar medium. \j 31 Galaxy Nebula of Andromeda




Conclusions

* Study of spatial distribution of 200,000 stars of all spectral types in the solar
neighborhood at a distance of 1 pc to 100 pc from the Sun from observational data
of telescope “GAIA” (DR2, 2018) showed the presence of fractal structures with
fractal dimension D = 2, 41.

* Kinetic parameters for this fractal stellar medium are estimated

» Effective interpartcle (interstellar) distance: r,, = 0,49 parsec

Traditional estimations of the effective interparticle spacing for homogeneous stellar
medium: r,, = 1,06 — 1,16 parsec, that is two times more

*The value of "correlation length® Tg = 2,35 parsec, that is approximately five times
more, than the effective interparticle distance

* The impact parameter for close encounter is ten times less than for the
homogeneous stellar medium: p, .. =0.1p, 817G m2hin A
» Coefficient of the dynamic friction is obtained: a(ry) ~ 3

(D—3)
T'wﬂ

*The relaxation time for a fractal medium is approximately ten times
shorter than for a homogeneous stellar medium: Ty /r = 0,0997,.,



Conclusion

 Stars in solar neighborhood from observational data of telescope “GAIA”
form gravitationally bound structured formations, such as clusters, parts of
spiral arms, clumps, which have fractal properties and obey the laws of
fractal kinetics. This leads to the substantial shortening the collisional

relaxation time in our Galaxy. M 42 Nebula of Orion
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consists of determination of number N (r; R; ) of stars in spheres

with increasing radius “r “ with center in the i-th star located at a radial distance
R; from the observer.

The mean number of stars in spheres of radius “r”:

N (r) — mean number of stars in spheres with radius “r
N (r; R, ) —number of stars in sphere with radius “r “ with center in the i-th star;
— radial distance of i-th star from the observer;

m ( r ) — number of spheres of radius “r” is equel to number of studied stars;
in spheres of radius “r “ around the stars:

n(r)=N()/V(r)

V (r) — volume of sphere of radius “r “



The main stages in development of ideas about
fractal structures in stellar medium of galaxies

Carpenter (1938) : number density of galaxies in cluster decreases with the
growth of characteristic cluster sizes according to the fractional-power law

n~ N/r3 ~r 13

N — number of galaxies in cluster; r —size of cluster; n — density of galaxies in
cluster

Vaucouleurs (1970) (on base of new galaxy clusters data):

7

n(r)~r 1
- galactic medium is arranged hierarchically

- any observer, included in the hierarchy, will find that the mean density
around him decreases with distance

- any large identical volumes have the same mean density, regardless of the
position of their centers relative to each other. This density can be called the
Invariant conditional density

Vaucouleurs has extended power law to entire stellar medium



The interpretation of Mandelbrot and fractal
dimension

Mandelbrot (1988) interpreted results by Carpenter and Vaucouleurs as a
special case of stochastic self-similarity of three-dimensional random fractal
sets for which the relation holds:

n(r)~r«

r — characteristic size of the increasing volume around observer included in
hierarchy; n (r ) — invariant conditional density ; a — exponent

D=3-a«a

D —is fractal dimension

Mandelbrot showed that, depending on the characteristics of the medium in
various gravitating media, for fractal structures

0<D<3

— a — exponent can vary from 0 to 3



The results of our calculations of spatial distribution and
fractal properties of 200 000 stars in solar neighborhood
from data of "GAIA" (DR2,2018)

200,000 stars of all spectral types at distances from 1 to 100 parsecs from Sun

Mean star density n (r) in spheres of radius r around the stars is approximated
by power laws of the form:

n(r)=hr ¢

whereh=1,654; a=0,586; D=3-a=2,41

n(r) = 1,654 r~0°86

This law confirms the conclusions by Vaucouleurs and Mandelbrot
for fractal structures in gravitating media



Mean stellar density vs. radius of the sphere around the stars

lzn

" a = 0,586

X-axis: r in parsecs (pc),
Y-axis: stellar density n in pc3.

Red line — 200,000 stars of all spectral types at distances from 1 to 100

parsecs from Sun from observational data of telescope “GAIA” (DR2, 2018)
h=1,654;a=0,586; D =241,

Blue line — 13,000 F, G — type dwarf stars at distances from 1 to 20 parsecs
from Sun from observational data of the Geneva—Copenhagen Survey
(Chumak and Rastorgueyv, 2015), h=1,644; a =1,769; D = 1,23;



has a goal — studying coordinates, direction of
motion, spectral types of a in the
search for exoplanets, asteroids and comets in the

Launched in 2013 and located at a distance 1, 5 million km from the
Earth

DR2 — Data Release 2 (2018)



A-priory: o
Ty = f rw(r)dr
0

Then, the

‘ 3, D \? p+1
—x..1/D
a3t 25
f‘e =D \anh D

0
coefficient h and fractal dimension D were taken from our calculations

-1/D

_ 3 (4117}1)
Ti’ﬂ - D D

fractal dimension and mean stellar density we obtain the well-
known estimation from (1943) for the mean interparticle spacing
for quasi-homogeneous media:

3 \1/3 4
T (—) T (—) ~ 0,554n"1/3
3

41Tn
coefficient fractal dimension were taken from our
calculations
Then, the



A-priory: r,, = J. rw(r)dr
0

where W () — the distance distribution, which is presented above;
w (r)dr it is better to rewrite in the form:

dx = —e*d
w(x)dx DB X

where
4mh D
X=——7T
D
coefficient h and fractal dimension D were taken from our calculations
Then, the m

1/D

3 4mh\ VP [ 3/ D D+1
i D(D) fex *~D\arn D
0



In the limit fractal dimension D=3 and mean stellar density h=n we obtain the well-
known estimation from Chandrasekhar (1943) for the mean interparticle
spacing for quasi-homogeneous media:

1/3

3 4
Ty = (—) r (—) ~ 0,554n"1/3
41T 3

e Study of stellar medium in the solar neighborhood from observational data of
telescope “GAIA” (DR2, 2018) showed the presence of fractal structures with
fractal dimension D= 2,41; h=1,654;r  =0,49 parsec

* The result obtained is consistent with result for F, G — type dwarf stars from
observational data of the Geneva—Copenhagen Survey (Chumak and
Rastorguev, 2015) (fractal dimension D = 1,23; h =1,644 ; r., = 0,48 parsec );

* Traditional estimations of the effective interparticle spacing for homogeneous
stellar media - r,, = 1,16 parsec; r, = 1,06 parsec, that is two times more



ESTIMATION OF THE IMPACT PARAMETER

| 26
For m = mf from (ll) we obtain P, = V.:n

To determine the velocity of a test star, it is convenient to use the virial theorem
GNm

N r

where N is the number of particles in the system, I' is the size of the system.

Substituting formula (13) into (12), we obtain:
2r

PL="N
Expressing the number of stars in formula (14) through the density n, we obtain for

a homogeneous stellar medium:
P.

VZ

_ 3
- 2nmrl




ESTIMATION OF THE IMPACT PARAMETER

For a fractal stellar medium, taking into account formula (3), we obtain:

3?13—2
PL = 2mh
Due to the fact that D = 3 — «, expression (16) takes the form:
3ri-P
PL= 2h

As can be seen from formula (17), it takes on a classical form in the case of

a homogeneous distribution of stars with D—3, h—n.
From formulas (17) and (15) we obtain the relationship:

(3-D)

Py = hinr

P.

To estimate the impact parameter for a fractal stellar medium, we introduce

another important kinetic parameter, the **correlation length™'

1
Yo = h D-3



ESTIMATION OF THE IMPACT PARAMETER

For our fractal model of stellar distribution, we obtain the value of the
“correlation length™ r, = 2.35 pc, which is approximately five times larger
than the effective interparticle distance.

Substituting the parameters defined above for the solar neighborhood into
the relation (18) and assuming that = 7y, we obtain:

Pisfr =0.1p,

Thus, the impact parameter for the fractal distribution of stars is approximately
ten times smaller than for the classical homogeneous stellar medium.



» Hertzsprung Russell diagram

*- shows the relationship between
the spectral class and

the luminosity of stars

Main sequence-

the main grouping of stars

on the diagram "spectral class —
luminosity"

It contains most of the stars,
since the main sequence
corresponds to the longest stage
In the evolution of stars,

at which thermonuclear
reactions involving hydrogen
take place in the core of the star.

2 GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM
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groups of stars distinguished by the nature of
their spectra.

« Closely related to the temperature of stellar atmospheres.

« The are blue stars of spectral classes O and B (50,000 K)
« The are stars of spectral classes M and L (2000 K).

. - spectral class G dwarf

. - small main sequence star (up to one solar radius and not

exceeding the luminosity of the Sun)

- the radiation power of a celestial body. That is the amount of
energy emitted by it per unit of time

« For most main sequence stars, the relation M* ~ R > ~L
« M- mass of star, R —radius of star, L —luminosity of star



Distances in astronomy

e 1 parsec ~ 30 000 000 000 000 km.
« 1 light year ~ 0,3 parsec.
e 1 astronomical unit ~ 150 000 000 km



3akon Kapnenrepa — BokyJiepa u croxacTuyeckue
HepapxXuy B IPABUTHPYIOIINX cpeaax - 1

[‘anakTuyeckas cpelia yCTpOE€Ha UEPAPXUUYECKH, U TTOTOMY JTHO00H
HaOJIFOIaTENb, €CJIM OH CBSI3aH C 00OBEKTOM, BKIFOUEHHBIM B HEPAPXUIO,
OOHApYKHUT, UTO CPEAHAS INIOTHOCTh BOKPYT HETO YOBIBAET C PACCTOSHUEM.
[Ipr 3TOM B raJIJakTUYECKOM CPeJI€ HET BHIACICHHOIO MOJIOXKEHUS, TO €CTh
TI00BIE JOCTATOYHO OOJBIINE, HO 00UHAKOB8ble 00BEMBI, UMEIOT OJUHAKOBYIO
CPEIHIOIO TIJIOTHOCTh HE3aBUCUMO OT ITOJI0KEHUS UX IEHTPOB APYT
OTHOCHUTEJBHO Ipyra. Ty INIOTHOCTh MOXHO Ha3BaTh MHBAPUAHTHOU
ycnosnou niomuocmoio (YI1). OqHako, €ciii Mbl OyIeM CUHXPOHHO U3MEHSTh
pa3Mephl ATUX (OJMHAKOBBIX) 00beMOB, TO YII OyneT M3MEHSThCS C
XapaKTEepHBIM pa3MepoM 00bemMa I 10 3aKOHY:

n(r)~r-¢

e @ = 1,7 . 910 n ecTh 3aK0H Kaprnienrepa — Bokyiepa aj1s raJakTH4eCKOu
Cpeabl



IIb1ab KanTopa

—
I I Lie e Lz

E mm mm ¢- (1/3)% 27(1/3)% = (2/3)%
TR I EEna=1n=1/a

TR nmn nn na’> =1,n = 1/a*

1N T mm wmw n=1/a® n=1/a*

d — pasmepHoCcTb 0bbekTa

(11—l (1 TVl
| logn

I |y e wn 4= 1
log ()

d =log(2)/log(3) = 0,63 ...




bokc aJIropuTM U CKeNJIUHI.
Texnuka mojgydeHus1 GpaKkTajabHOU Pa3MEePHOCTH
nmodepexnbs oM yactu HopBerun

L(a) = N(a) xa

(1 — pa3Mep KIeTku

N(a) — 4vCcro KneTok




Log,, (o61uan anuHa 1oSepe>KbLsl B KM )

I'padpuk Puuapacona. Jnmna 6eperoBbix JUHUA

Hoﬁepe?l\'he

‘t\/{ﬂcyp&w

\g‘_\"

A : 3

Tlotepeskse Kotroit Adprku

) OI{E}"}[{HOCTB' H\H@'\

qb

Log,, (1nsHa Lara B k)

35

log(L(a)) — log(a) - rPadvk Puyapacora
k=1-—d -xoapdunumneHT HaknoHa
L(a) = b xal™™

d — - dpakTanbHaa pasmepHoOCTb

dy = 1,52 + 0,01 - Hopserus

dG = 1,3 ... - BenukobpuTaHus



3aKoH pacnpenejgeHUss MOAYJIA CAYIANHON CHIIBI 1JIs1
(bpakTaJIbLHOU cpeabl B NPUOJIMKEHUN OJIMKANIIETO
cocena -1

Kak BbImie ormevanocek, Yanapacekap (1943) nmomyuumn TOUHOE pelieHUE A1
pacnpenencHusa QIyKTYUPYIOIIEH CIIy4aliHON CUJIbI B CIy4ae
HEeKOppeanupoBaHHOTO (ITyacCOHOBCKOr0) CIIy4amHOTO CTaTUCTAYECKOTO
MIPOCTPAHCTBEHHOI'O PaCIPEICICHUS TPABUTUPYIOIIMNX 3BE€3/1. DTO PEIIICHUE
UMEET BUJ pacpeaesicHus X0JblIMapKa:

wW(|E|) = H(B)a*/3
[ e

H(p) = ‘nriﬁf (x/ﬁ):*f ]xsmxdx
0

a = (4/15)(2n6m)*? n _ecmm Bee

I'paBUTHPYHOIINUEC TOYKHU UMCIOT PABHBIC MACCHI.



3aKoH pacnpenejgeHUss MOAYJIA CAYIANHON CHIIBI 1JIs1
(bpakTaJIbLHOU cpeabl B NPUOJIMKEHUN OJIMKANIIETO
cocena -2
[Tpu sTOM Ge3pa3MepHas cuja paBHa:

p = [Fl/as

Jlanee Yanapacexkapom (1943) ObL10 mOKa3aHO, YTO ACUMIITOTHKA
pacnpeeneHus XoJIblMapKa s OOJIbIINX CIyYalHBIX CUJI B TOYHOCTH
COBMAJAET C paCIpPEACICHUEM CYyYaliHON CHUIIBI, ICHCTBYIOIICH Ha MPOOHYIO
3BE3y €AMHUYHOM MACChl CO CTOPOHBI OJIMKAMIIIEro cocesia ¢ Maccom m,

HaXOAIIETOCs Ha PACCTOSHUU 1

., GGm
Fl=—%

Acumnrotuka gis W F|) moxer 6bITh monydeHa U3 3akoHa pacnpeeieHus
paccTosiHUS 10 Ommkaiimero cocena W(r) :

w(r)dr = 4mexp(—4nr3n/3) rindr



3akoH pacnpeaegeHus OJIHKANIIET0 COCena
(3amaua I'epua) - 1

Haiinem cBsi3b pacnpeesieHus: XoJIblIMapKa ¢ pacnpeacieHueM OMnKanIlnero
cocella, n — OJAHOPOJHAA MJIOTHOCTh

w(r)dr = P { 6mkaiui cocef € (r,r+dr)

chepH4ecKHil coi
pasHyvcar H ToaHHoA di/

e

= P{HeT 3Be3 6s1kKe 1'}
+ P{B cmoe r + dr poBHo 1 3Be3fa}

MaTeMaTHUYeCKOe OKHMIaHNe YKciia 38e31 B ciaoe(r, T + dr)

A=4mr’ n dr <1

Majla Majda



3akoH pacnpeaegeHus OJIHKAUIIET0 COCeaa
(3agmaua I'epua) - 2
Pacnpenenenue Ilyaccona
e—ﬂ

_ kS
P, (k) = A*—

B Hamem cnyqae =1 = P.(1)= A ( e * 6/m3kok1,T.K. A Mam}) =

= P{B c0e r + dr poBHO 13Be3za} = 4mnr*ndr

T
P{B npenenax r HeT HU OJHOM 3Be3jpl} = 1 — f w(r)dr

0
EEpPOATHOCTE TOTOMTO
eCcThk X0TH Or1 1 2EezIa

w(r)dr = ll — fw(r)dr‘ 4rtr’ndr
0



w(r)dr = ll - fw(r)dr‘ 4rtr’ndr

L A
0
f w(r)dr = 1 — 4iiz)n
0
w(r)

1 —
~dr 41Tr?

g



_d | w(r)
A == dr [4nr2n
d|lw() |
dr [411’1‘211 = =A@

417712 41T712

£ o] -]

y(r) y(r)

dy(r)
dr

= y(r)(—4mr’n)



1dy

v 4Tr-n; air ny Trn
d .
_dr Inydr = —j4ﬂ'f‘ ndr

4
Amrin y(r) = Cexp {—— ?I'R?’n}
3 . 3
w(r)

4mT1r2n

Iny = —

I[Ipuy - 0:w(r) — dnr’‘n=>C=1
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3akoH pacnpeaegeHus OJIHKANIIET0 COCena
(3amaua I'epua) - 4

3aKOH JIJIs pacipeIeIeHUs PacCTOSHUM 10 OJIMKaMIero coceaa

4
w(r) = C4nr’nexp{ —=mR>n

—

Vv

V * n — MmaTeMaTH4ecKoe O OaHHE HHUCJId 3BE3 /[

BepositHOoCcTh Manbix cun = 0, w(r) — 0.

— o0

Tounas hopmyia ajist CpeAHEr0 PacCTOSHUSA MEKAY 3BE3AaMHU
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3aKoH pacnpenejgeHUss MOAYJIA CAYIANHON CHIIBI 1JIs1
(bpakTaJIbLHOU cpeabl B NPUOJIMKEHUN OJIMKANIIETO
cocena -3

w(r)dr = 4wexp(—4nr3n/3) r’ndr

W (F)d[F| = 4mn(Gm)* 2 x exp |- =27 (Gm)*/2 [F | [F|*aF|
[Tomyuum o0oO1eHne pacnpeacaeHus W (|F|) ans ppakTaibHOU
IIPOCTPAHCTBECHHOM INIOTHOCTH 3BE3/] B IPESAIIOI0KECHNH, YTO CHUJIA,
ACHCTBYIOIIAs Ha MPOOHYIO 3BE31Y, TaK K€, B OCHOBHOM, IPEICIISICTCS
OmkaiIiM coceloM. [[J1s 5Toro npu BEIBOJC pacIpeaeICHUS PACCTOSHUS
10 O KaMIIero cocena He0OXOAUMO YUE€CTh 3aBUCUMOCTh CpEIHEH
IJIOTHOCTH OT PACCTOSHUS B BUJIE BBIPAKCHHUS:

n(r)=hr (2)



3aKoH pacnpenejgeHuss MOAYJIA CIAYIANHOU CHIIbI IJIs1
(ppakTaIbLHOU Cpeabl B NPUOJIMKEHUH OJIMKANIIETO
cocena -4

Urak, n()=hr “ . Torma:

W(?") — Il — IW(?‘)dT‘ 41rr2n(r) =4mh ll — IW(T’)dr yD-1
0 0
d w(r) w(r)
OTkyna moiay4yaem: — _ D-1
Y. y Ir l4nhrﬂ‘1 4thr T D

. D-1
V4UTBIBasL, 9TO, COLIACHO 3TOH dopmyie, mpu r — 0, W(r) = 4mhr™ "

NMCCM.

4mh
w(r)dr = 4mhexp (—%r”) r?=1dr (3)

3710 U ecTh aHasor GopMysl w(r)dr = 4mexp(—4nrn/3) r’ndr, T0 ecTh
000011IeHrE 3aKOHA pacIpeacaeHUs OIKaUIINX coCeIel s ciydas
(bpakTaJIbHOTO pacipeaeIeHUs Macc.



3aKkoH pacnpeneseHrus MOAYJIS CJAYYAUHOW CHJIBI 1A
(ppakTaJbHOM cpeabl B NPUOJIHMKEHUH OJIMKAMIIIET0 COceaa - O

Jlanee, yautbiBas (hOpMyiy |_>‘ Gm
F|=—-
"

13 popmyisl (3) MOCIE HECIOXKHEIX MPeoOpa30BaHUM IMOTydacM 0000IIeHIE
dopmynsl (1) Ha cIydai CTCIIEHHOrO 3aKOHA JIJIs INIOTHOCTH (2):

D/2
4Th (G _, -D+2 -,
W([F| D)F| = 4mh(Gm) x exp | 47 (|§|“) (F)2glF

rae D - dpakTambHas pa3MEPHOCTD.

W3 dopmynsl (4), mepexons K mpeaeiry OMHOPOIHON CPEIbl

(¢ = 0,D - 3,h = n), norydaem pacrpeaencarue XoabiMapka (1).

B npenene cuibHbIx nonei (|F| = ) u3 (4) nonysaem:
W(F|D) = 4nh(Gm)Df2F_¥

()



3aKkoH pacnpeneseHust MOAYJIA CIAYYANHOM CUIIbI 1JIs
(ppakTaJIBLHOU Cpeabl B NPUOIMKEHUH OJIMKANIIEro
cocena - 6
O0o03Ha4uB Yepe3 x 0e3pa3MepHBIN MOKA3ATEIb SKCIIOHEHTHI B (hopmyiie (4),
3anuiieM (4) B BULE:

Mo W(F|D)F = 3xe™*

AW (F|D) = (3x)P+2)/Dg—x

41h)?/P D/2
[ e 4 = ( ) x

am 3

B 4mth (Gm
B F )












