

Study of the deuteron spin structure at short distances and reactions mechanisms at LHE/LHEP JINR

V.P. Ladygin VBLHEP, 28 March 2025

Outline

- Motivation
- Review of dA- inclusive breakup in collinear geometry and dp- backward elastic scattering data.
- Results on inclusive breakup and pion production at large transverse momenta in dA-interaction.
- Discussion of the polarization data for exclusive channel dp→ppn.
- Possible continuation at Nuclotron JINR.
- Conclusion

Motivation of the dp interaction studies

- Nucleon-nucleon interaction at short distances (including its mass off-shell behaviour)
- Relativistic effects
- Transition to the nonnucleonic degrees of freedom
- Contribution of three-nucleon forces (3NFs)

Deuteron : J=1, S=1, I=0

Few nucleons systems as a tool for dense matter studies

Alternative (to HIC) way to obtain the information on the EOS at extreme densities (neutron stars) is the studies of the few nucleon systems.

Relativistic effects in 2NF and contribution of 3NF play very important role. (A.Akhmal et al, Phys.Rev. C58 (1998) 1804)

Short range correlations (SRCs)

 Summary of the theoretical analysis of the experimental findings practically all of which were predicted well before the data were obtained

 More than ~90% all nucleons with momenta k≥300 MeV/c belong to two nucleon SRC correlations

 BNL + Jlab +SLAC

 Probability for a given proton with momenta 600> k > 300 MeV/c to belong to pn correlation is ~ 18 times larger than for pp correlation

 BNL + Jlab

 Probability for a nucleon to have momentum > 300 MeV/c in medium nuclei is ~25% BNL + Jlab 04 +SLAC 93

 Probability of non-nucleonic components within SRC is small - < 20% - 2N SRC mostly build of two nucleons not 6q, ΔΔ,...</td>

 BNL + Jlab +SLAC

Poor data base on the spin parts of the 2N and 3N shortrange correlations. This motivates the necessity to study light nuclei structure at short distances. Experiments at JINR allowed to reach $p_T \sim 1$ GeV/c

Relativistic effects

• The principal feature of the relativistic quantum mechanics is the impossibility to separate the relative motion of the constituents and motion of the composite system as a whole. This leads to the dependence of the **relativistic** wave function not only on the relative momenta of the nucleons \vec{q} inside the composite system, but also on the total momentum \vec{p} of this system

$\boldsymbol{\Psi} = \boldsymbol{\Psi}(\vec{\mathbf{q}},\vec{\mathbf{p}})$

- Therefore, **relativistic** wave function is the function of the relative momentum \vec{q} in each new reference system.
- However, it is enough to know wave function in the infinite momentum frame, $\vec{\mathbf{p}} \rightarrow \inf$, where the structure of the wave function simplifies. Namely, the dependence on $|\vec{\mathbf{p}}|$ disappears, only the dependence on the direction of the vector $\vec{\mathbf{n}} = \vec{\mathbf{p}}/|\vec{\mathbf{p}}|$

$\boldsymbol{\Psi} = \boldsymbol{\Psi}(\vec{\mathbf{q}},\vec{\mathbf{n}})$

Relativization schemes

For the case of the deuteron vertex the internal momentum \mathbf{k} :

$$k = \sqrt{\frac{m_p^2 + \mathbf{k}_T^2}{4x(1-x)} - m_p^2},$$

$$x = \frac{E_p + p_{pl}}{E_d + p_d},$$

where \mathbf{E}_d and \mathbf{p}_d are the energy and momentum of the initial deuteron, respectively, $\mathbf{p}_{\mathbf{p}\mathbf{l}}$ is the longitudinal momentum of the proton, $\mathbf{m}_{\mathbf{p}}$ and $\mathbf{E}_{\mathbf{p}}$ are the mass and energy of the proton, respectively.

- Minimal relativization scheme (Dirac, Weinberg, Frankfurt& Strikman)
- Bete-Salpeter equation solving (Tjon&Keisler, Bondarenko et al.)
- Quasi-potential wave functions (Gross, Braun&Tokarev, Kaptari et al.)
- Covariant theory on the light cone (Karmanov et al.)

Deuteron wave function on the light cone

Relativistic deuteron wave function on light cone is defined by 6 invariant functions $\mathbf{f_1}, ..., \mathbf{f_6}$ (instead of 2 in the non-relativistic case), each of them depends on 2 scalar variables \mathbf{k} and $z = cos(\widehat{\mathbf{kn}})$:

$$\psi(\mathbf{k}, \mathbf{n}) = \frac{1}{\sqrt{2}} \sigma f_1 + \frac{1}{2} \left[\frac{3}{k^2} \mathbf{k} (\mathbf{k} \cdot \sigma) - \sigma \right] f_2 + \frac{1}{2} [3\mathbf{n} (\mathbf{n} \cdot \sigma) - \sigma] f_3 + \frac{1}{2k} [3\mathbf{k} (\mathbf{n} \cdot \sigma) + 3\mathbf{n} (\mathbf{k} \cdot \sigma) - 2\sigma (\mathbf{k} \cdot \mathbf{n})] f_4 + \sqrt{\frac{3}{2k} i} [\mathbf{k} \times \mathbf{n}] f_5 + \frac{\sqrt{3}}{2k} [[\mathbf{k} \times \mathbf{n}] \times \sigma] f_6,$$

$$(\mathbf{n} \cdot \mathbf{k}) = (\frac{1}{2} - \alpha) \cdot \sqrt{\frac{m_p^2 + \mathbf{p}_T^2}{\alpha(1 - \alpha)}}$$

V.A.Karmanov, J.Carbonell et al.

Dependence of the deuteron structure on 2 internal variables

Non-nucleonic degrees of freedom

When the distances between the nucleons are comparable with the size of the nucleon, the nucleon- nucleon interaction is a **non-local**.

The fundamental degrees of freedom, quark and gluons in the frame of QCD, begin also to play a role at the internucleonic distances comparable with the size of the nucleon.

They can manifest as $\Delta\Delta$, NN*, N*N*, 6q etc.components.

Fundamental (quark) degrees of freedom

At high energy s and large transverse momenta p_t the constituent counting roles (CCR) predict the following behavior of the differential cross section for the binary reactions:

$$\frac{d\sigma}{dt}(ab \rightarrow cd) = \frac{f(t/s)}{s^{n-2}} \quad ; \quad \mathbf{n} = \mathbf{N}_{\mathbf{a}} + \mathbf{N}_{\mathbf{b}} + \mathbf{N}_{\mathbf{c}} + \mathbf{N}_{\mathbf{d}}$$

Matveev, Muradyan, Tavkhelidzeself-similarityBrodsky, Farrar, LepagepQCDPolchinski, StrasslerAdS/QCD correspondence

Picture is taken from

Yu. N. Uzikov, JETP Lett, 81 (2005) 303-306

For the reaction **dd** \rightarrow ³**Hen**

$$N_A + N_B + N_C + N_D - 2 = 22$$

For the reaction $dp \rightarrow dp$

$$N_{A} + N_{B} + N_{C} + N_{D} - 2 = 16$$

Similar rules for dp-inclusive breakup: ~(1-X)⁵

Three Nucleon Forces

- Modern NN potentials (CD-Bonn, AV-18, Njimegen etc.) accurately reproduce the NN data set up to about 350 MeV. However they fail in the description of the triton binding energy and data on unpolarized dp-elastic scattering and breakup.
- Incorporation of three nucleon forces (3NF), when interaction depends on the quantum numbers of the all three nucleon, allows to reproduce the binding energy of the three-nucleon bound systems and the data on unpolarized **dp**- interaction.

- Tucson-Melbourne
- Brazil
- Urbana-IX
- Fujita-Miyazawa $(N\Delta)$
- Chiral Effective Field Theory

Needs to be very careful: according to the theorem of W.N.Polyzou and W.Gloeckle, Few Body Syst. 9 (1990) 97, off-shell behaviour of 2NF can imitate 3NF effect.

Triton binding energy without 3NF: Y.Fujiwara et al., Phys.Rev.C66 (2002) 021001(R)

The differential cross section in elastic Nd scattering at the energy of 135 (left figure) and 250 (right figure) MeV/u.

K. Sekiguchi et al., Phys. Rev. Lett. 95, 162301 (2005)

K. Hatanaka et al., Phys. Rev. C 66, 044002 (2002)

The cross section data for **dp**- elastic scattering are reproduced well up to 150 MeV taking into account 3NF. Manifestation of three-nucleon forces effect in the cross-section of **dp**-elastic scattering at this energy: up to 30% in the vicinity of Sagara discrepancy. But the problems in the description are at higher energies. New types of 3NF (short range, s-channel contributions).

Status to the late 1980s

Two competing scientific centers with polarized deuteron beam: LHE, JINR (Dubna, USSR-RF) and LNS (Saclay, France) with Synchrophasotron and Saturne-2 accelerators, respectively.

Cross section is proportional to

Tensor analyzing power

 $u^2(k) + w^2(k)$ for dA \rightarrow p(0°)X

 $(u^2(k) + w^2(k))^2$ for dp→pd

$$T_{20} = \frac{w(k)}{\sqrt{2}} \frac{2\sqrt{2}u(k) - w(k)}{u^2(k) + w^2(k)}$$

L.L.Frankfurt, M.I.Strikman, PLB76 (1978) 285 S.S.Vasan, PRD8 (1973) 4092; V.A.Karmanov, YF34 (1981) 1020

SATURNE-2 results to the late 1980s

J.Arvieux et al., PRL50 (1983) 19 J.Arvieux et al., NPA431 (1984) 613

Strong deviation of T_{20} from ONE predictions: negative value at large k, smaller than $-\sqrt{2}$ at k=300 MeV/c

SATURNE-2 results to the late 1980s

C.F.Perdrisat et al., PRL59 (1987) 2840 V.Punjabi et al., PRC39 (1989) 608

Strong deviation of T₂₀ from RIA Weak dependence on the target A

Synchrophsotron results at the late 1980s

Shoulder in cross section at k=300 MeV/c \rightarrow New physics (6q component).

Strong deviation of T_{20} from RIA predictions: negative value at large k, smaller than $-\sqrt{2}$ at k=300 MeV/c

1-st JINR award in 1989 HZDR (Rossendord) award in 1989

V.G.Ableev et al., NPA 393 (1983) 491 V.G.Ableev et al., JETP Lett.47 (1988) 649

New polarization observable

Experiments performed at both facilities demonstrated the following results.

1.

 $u^2(k) + w^2(k)$

extracted from the cross section data for the both reactions $(dA \rightarrow pX \text{ and } dp \rightarrow pd)$ within RIA have the same behaviour: shoulder at k=300 MeV/c

2. strong deviation of T_{20} from RIA and ONE predictions: negative value at large k, smaller than $-\sqrt{2}$ at k=300 MeV/c

Transverse polarization transfer from vector polarized deuteron to proton for $dA \rightarrow pX$

$$\kappa_0 = \frac{u(k)^2 - w(k)^2 - u(k) \cdot w(k) / \sqrt{2}}{u^2(k) + w^2(k)}$$

L.L.Frankfurt, M.I.Strikman, NPA 405 (1983) 557 A.Boudard, C.Wilkin, J.Phys.G:Nucl.Phys. 11 (1985) 583

36=3*12 years ago I began my work at JINR

Polarized ion source POLARIS

LHe LN, S 18 17 TO LINAC um 15 14 3 7 8 13 12 10

Yu.K.Pilipenko

Intensity up to 3-10⁹ d/pulse (peak)

Pyy= ±0.75-0.80 Py = ±0.50-0.57

Yu.K.Pilipenko et al., NIM A536 (2005) 237

First measurements of K₀ **at ALPHA setup**

I.M.Sitnik – leader

B.Kuehn – Live target

Very exotic behaviour! QCD? Enormous deuteron D-state behaviour?

Presented at 7th Conf. On Polar.Phen.in Nucl.Phys., July 1990, Paris

First measurements of K₀ at ANOMALON setup

Quite low experiment luminosity (FOM) at ALPHA Possible problems with analyzing powers for proton polarimetry

L.N.Strunov

1m hydrogen target

Detection of pp-elastic scattering

Close to 2π acceptance

ANOMALON setup!

V.A. Sviridov

First measurements of K₀ at **ANOMALON setup**

A.V.Zarubin -leader

V.V.Perelygin ANOMALON team

ALPHA-team L.S. Zolin&Co B.Morozov &Co

Negative value of K₀ at k=400 MeV/c consistent with traditional approaches

Start of several collaborations

Dubna-Saclay-Virginia

(Sitnik, Tomasi-Gustaffson, Perdrisat)

ANOMALON (Zarubin, Strunov, Belostotsky, Horikawa)

First steps toward Delta-Sigma (Strunov, Lehar)

First motivation of polarization effects in meson production

B. Kuehn - chairman S.Shimansky – scientific secretary.

Measurements of \mathbf{K}_0 **in dp** \rightarrow **pX at SPES4-POMME**

SATURNE-2

SPES4 spectrometer POMME calibrated proton polarimeter with carbon analyzer

E.Cheung et al., PLB284 (1992) 210

Behaviour of K₀ is **consistent with the traditional approaches**

Measurements of K₀ in dC \rightarrow pX at ANOMALON

A.A.Nomofilov et al., PLB325 (1994) 327

Behaviour of K_0 is consistent with the traditional approaches taking into account pion production, while behaviour of T20 is not!

Measurements of \mathbf{K}_{0} **in dC** \rightarrow **pX at ALPHA setup**

B.Kuehn et al., PLB334 (1994) 298

L.S.Azhgirey et al., JINR RC3[77](1996) 23 Behaviour of K_0 is consistent with the traditional approaches taking into account pion production.

pCH₂ analyzing power is higher than pCH analyzing power at 4.5 GeV/c.

Measurements of T_{20} and K_0 in dp \rightarrow pd at SATURNE2

 $\kappa_{0} = \frac{u(k)^{2} - w(k)^{2} - u(k) \cdot w(k)/\sqrt{2}}{u^{2}(k) + w^{2}(k)}$

C.F.Perdrisat, V.Punjabi - leaders

V.Punjabi et al., PLB350 (1995) 178

VPL -1992 I.M.Sitnik,V.P.Ladygin,M.P.Rekalo,PAN57(1994)2170

Behaviour of T_{20} and κ_0 is completely different for $dp \rightarrow pd$ and $dp \rightarrow pX$. Unexpected structures in T_{20} for $dp \rightarrow pd$ Different reaction mechanisms, different degrees of freedom(?)

Measurements of T_{20} **in dp** \rightarrow **pd at ALPHA**

dp/p =0.3%

I.M.Sitnik -leader

L.S.Azhgirey et al., PLB 391(1997) 22

Behaviour of T₂₀ is completely different from ONE predictions. New unexplained structure at k=600 MeV/c. Negative T₂₀ value at k>700 MeV/c.

Measurements of T₂₀ in dp \rightarrow p (pn) at ALPHA

I.M.Sitnik -leader L.S.Azhgirey and S.Nedev -leading role in the data treatment.

L.S.Azhgirey et al., PLB 391(1997) 22 L.S.Azhgirey et al., PAN 61 (1998) 494 Absence of k-scaling in T_{20} behaviour for dp \rightarrow p (np). Significant role of FSI. Dependence on k and Mx \rightarrow first hint on dependence on 2 variable

Measurements of T_{20} **in dC** \rightarrow **pX at ANOMALON**

T.Aono et al., PRL74 (1995) 4997

T₂₀ at large k has large negative value inconsistent with the traditional approaches predictions.

Model dependent values of T₂₀ ("RIA" is used)

Measurements of T_{20} **in dA** \rightarrow **pX at 9 GeV/c at ALPHA**

N.M.Piskunov – leader

L.S.Azhgirey et al., PLB387 (1996) 37

 T_{20} at large k (>700 MeV/c) has large negative value inconsistent with the traditional approaches predictions. T_{20} weakly depends on the energy. $|T_{20}|$ for carbon target is 30-40% less than for hydrogen target.

Results on \mathbf{T}_{20} in dA \rightarrow pX and dp \rightarrow pd

1. T_{20} in both processes at large k (>700 MeV/c) has large negative value inconsistent with the traditional approaches predictions. 2. Reaction mechanisms are very important. 3. Unexpected structures in are observed in T_{20} behaviour in dp \rightarrow pd. 4. Best in the world results for dA \rightarrow pX: T_{20} (H) = -0.558 ±0.150 at k=985 MeV/c T_{20} (C) = -0.351 ±0.116 at k=1000 MeV/c

Theory for description of $dp \rightarrow pX$ and $dC \rightarrow pX$

A.P.Kobushkin, PLB 421 (1998) 53

Quark Exchange + NIJM93 Minimal scheme of relativization Glauber-Sitenko approach

Theory for description of $dp \rightarrow pd$

L.S.Azhgirey, N.P.Yudin, PAN 63(2000) 2184

Reaction mechanisms! L.Kaptari et al., PRC57(1998)1097 N.B.Ladygina, SciPost Phys.Proc.3(2020)053 One Baryon Exchange with 1% total probability of N*(1520),N*(1535),N*(1650),N*(1675) Effective P-waves.

Structures in T₂₀ **cannot be reproduced**

What to do?

N.G. Chernyshevsky

with polarized deuteron beam of 2-3-10⁹ ppp ?

T_{20} in cumulative meson production

M.A.Braun, M.V.Tokarev, In Proc. of Deuteron-91

Fiz.Elem.Chast.Atom.Yadra 22 (1991) 1237
$\mathbf{T}_{_{\mathbf{20}}}$ in cumulative meson production at SPHERE

A.G.Litvinenko

Spectrometer: VP1,4V PID: TOF& aerogel First measurements in 1995

L.S.Zolin

A(d,p)X reaction at large transverse momenta (up to 1 GeV/c) of protons at MASPIK

L.S.Azhgirey

N.P.Yudin

L.S.Azhgirey et al., NPA528(1991)621

H,D,C targets Deuteron momenta 9 GeV/c 3 proton emission angles

$dp \rightarrow pX$ at large transverse momenta (up to 1 GeV/c) of protons at MASPIK

 $\begin{array}{l} \mbox{Relativistic hard scattering (RHS)} \\ \mbox{model desribes } dp \rightarrow pX \ reaction \ up \\ to \ p_T \ \mbox{-}1 \ GeV/c \ using \ standard \\ DWF \ (Paris) \\ \mbox{Meson production is negligiable} \end{array}$

A_{yy} in A(d,p)X reaction at large transverse momenta of protons at SPHERE

Based on idea: L.S.Azhgirey, N.P.Yudin, PAN 57(1994)160

Leaders: L.S.Azhgirey, V.P.Ladygin $F56_1 F56_3 F56_4$ $F56_2 F56_2$ $F_5 F56_4 F56_2 F56_4$ $F_5 F56_4 F56_2 F56_4 F56_2 F6_3$ $F_6 F6_3 F6_4 F6_4 F6_5$ $F_6 F6_5 F6_5 F6_5 F6_5 F6_5 F6_5$

The idea is to change the polarity of the field in M0 magnet (**P.A.Rukoyatkin**) to select the proton emission angle

PID: TOF (3 independent values)

Permanent monitoring of the vector polarization component

Results on T_{20} in cumulative pion production

Leaders: L.S.Zolin, A.G.Litvinenko

S.Afanasiev et al.,NPA625(1997)817 S.Afanasiev et al.,PLB445(1998) 14 T_{20} sign is positive being opposite to RIA predictions. T_{20} value is independent on the target A-value.

Non-nucleonic degrees (ΔΔ -component) ?

Description of T_{20} **in cumulative pion** production

A.Yu.Illarionov, A.G.Litvinenko, G.I.Lykasov, EPJA14(2002)247

Data on T₂₀ in cumulative pion production is described only with the use of $\sim 4\%$ 6q component.

Xc - cumulative number ($\sim \alpha/2$).

First results on A_{yy} **in C(d,p)X at 9 GeV/c and 85 mr of the proton emission angle**

Leaders: L.S.Azhgirey, V.P.Ladygin S.V.Afanasev et al.,PLB434(1998)21 **A**_{yy}sign is positive being opposite to RHS predictions.

Indication of the dependence on the emission angle.

A_{yy} in Be(d,p)X at 4.5 GeV/c and 80 mr

V.P.Ladygin et al., FBS32(2002)127

A_{yy}sign at large momenta is positive being opposite to RHS predictions. Variable k can be used as a scaling one up to P_T ~300 MeV/c. Dependence on the 2-nd variable !

A_{yy} in Be(d,p)X at 5.0 GeV/c and 178 mr

L.S.Azhgirey et al., PLB595(2004)151 Theory: L.S.Azhgirey,N.P.Yudin, PAN68(2005)160 L.S.Azhgirey,N.P.Yudin, PPN37(2006)535

A_{yy} is in agreement with RHS using Karmanov DWF at 5.0 and 178 mr

Some problems in description at other energies and proton emission angles.

45

Angular dependence of A_{yy} in H(d,p)X and C(d,p)X

A_{yy} demonstrates independence on the target A-value.
 RHS model with Karmanov DWF describes A_{yy} only at 85mr.
 V.P.Ladygin et al., PLB629 (2005) 60

Relativistic effects in deuteron from A(d,p)X

 A_{yy} in deuteron inclusive breakup demonstrates the dependence on 2 internal variables: p_{T} and x_{F} .

 A_{yy} changes the sign at p_T of about 600 MeV/c independently on X_F . A_{yy} demonstrates negative asymptotic at large p_T . V.P.Ladygin et al., PLB629 (2005) 60

Dependence of the deuteron spin structure on (n,k)/|k|

 A_{yy} in deuteron inclusive breakup at fixed k demonstrates strong dependence on 2-nd internal variable (n,k)/|k|. RHS with Karmanov DWF fails to reproduce the data at large k.

V.P.Ladygin et al., PLB629 (2005) 60

Deuteron spin structure from the world data

1. Best description of $t_{20}(ed)$ is obtained with Karmanov DWF. f_5 term plays very significant role (instead of MEC). 2. Calculations on A_{zz} in $ed \rightarrow e$ pn for upcoming experiment at JLAB demonstrate significant dependence on (n,k)/|k| variable at large k.

Results on A_{yy} in cumulative pion production

Leaders: L.S.Zolin, A.G.Litvinenko L.S.Azhgirey et al.,PAN74(2011)1392

A_{yy} has negative values at nonzero emission angles.

Results on A_{yy} in cumulative pion production

Leaders: L.S.Zolin, A.G.Litvinenko

L.S.Azhgirey et al., PAN74(2011)1392

 A_{yy} has negative values at large tranverse pion momenta P_{T} . A_{yy} demonstrates linear dependence on P_{T} , but there is no scaling on P_{T} . A_{y} has non zero value in noncumulative region. Data are still waiting for the theory!

Polarization observables in dp \rightarrow **ppn at 1.0 GeV/n from SATURNE-2.**

S.L.Belostotski et al.,PRC56(1997)50

Several polarization observables (A_{yy} , A_y , P_o , D_v has been measured) at 1.0 GeV/n.

Importance of the additional to IA mechanisms (Δ -isobar excitation in the intermediate state) is demonstrated.

$dp \rightarrow ppn at 1.0 \text{ GeV/n} from LHE BC$

V.V.Glagolev et al.,ZPA357(1997)107
V.V.Glagolev et al.,PAN59(1996)2125
$$A = \frac{N(\alpha < 90^{\circ}) - N(\alpha > 90^{\circ})}{N(\alpha < 90^{\circ}) + N(\alpha > 90^{\circ})}$$

 $\cos \alpha = \mathbf{q} \cdot \mathbf{p}_{\mathbf{s}} / |\mathbf{q}| |\mathbf{p}_{\mathbf{s}}|$

The deuteron D-state probability from dp → ppn at 1.0 GeV/n from LHE BC

V.V.Glagolev et al.,ZPA356(1996)183

Azimutal angle distributions for vector polarized dp → ppn reaction in quasielastic kinematics were analyzed. pp- and np- elastic scattering analyzing powers at 1 GeV were used (k<65 MeV/c).

 $\omega_{\rm D} = 0.078 \pm 0.046$

Figure of merit will be increased in future by a factor ~10³

Possible continuation at Nuclotron: inclusive

1. Measurements of the tensor analyzing power A_{yy} in $dA \rightarrow pX$ at large transverse momenta in order to reach k=1200 MeV/c

First depolarizing resonance for deuterons at Nuclotron is at 5.8 GeV.

10¹⁰ polarized deuteron beam with Pd=12-14 GeV/c Carbon target at F5 Spectrometer 4V + tracking with HyperNIS (optionally). Emission angle by 2SP40 PID MRPCs (70-80 ps)

2. Measurements of vector transverse polarization transfer K_0 in $dA \to pX$ at large transverse momenta

5-6·10¹⁰ polarized deuteron beam with Pd=10-6 GeV/c Focal plane proton polarimeter at fixed momentum 4.5-5.0 GeV/c Spectrometer 4V + tracking with HyperNIS (optionally).

Possible continuation at Nuclotron: exclusive

1. Measurements of the tensor analyzing power A_{yy} in $dp \rightarrow \Delta \Delta N$ as a tool for "hidden color" search

10⁶⁻⁷ polarized deuteron beam with Pd=4.5-6.0 GeV/c LH₂ target at F6 Tracking with HyperNIS +PID Detection of protons and pions within aperture of SP40.

2. Measurements of the tensor analyzing power A_{yy} in $dp \rightarrow ppn$ in SRC region

HyperNIS-SRC <u>is not very suited</u> to reach large k-values, but still can be used to estimate experimental D-state probability in deuteron (?).

Ways:

to use F5 point with 4V for fast proton+ TOF-arm for slow proton to build "new MASPIK"

Selection of dp $\rightarrow \Delta^{++}\Delta^{-}$ p and "n"p $\rightarrow \Delta^{++}\Delta^{-}$

A.P.Jerusalimov: seminar LHEP 31.01.25

Study of inclusive and exclusive dp \rightarrow dX

Deuterons are the main background for $dA \rightarrow pX$ studies at large k: Spin effects in $dA \rightarrow dX$ - by free.

Saclay idea is to measure spin-flip probabilites S0, S1, S2 for region of Roper N*(1440) resonance excitation in dp \rightarrow dX reaction (M.Morlet, C.Djalali -LNS E250)

Theory: VPL&NBL:PAN65(2002)182

L.S.Azhgirey et al., PLB361(1995)21, leader E.A.Strokovsky V.P.Ladygin et al., EPJA8 (2000) 409, leader V.P.Ladygin

Polarimetry: ALPHA polarimeter

V.G.Ableev et al., NIM306(1991)73

Polarimetry: Vector deuteron and proton polarimeter F4/F3

L.S.Azhgirey G.D.Stoletov F.Lehar L.Budkin V.N.Zhmyrov A.N.Prokofiev&Co

L.S.Azhgirey et al., NIM497(2003)340

Liquid hydrogen targets

L.B.Golovanov Yu.T.Borzunov A.P.Tsvinev

Conclusions

The study of the short-range deuteron spin structure at LHE/LHEP has a long and glorious history.

Significant progress in understanding of this problem has been achieved together with LNS (France), Jlab(USA).

The main achievements are:

- systematic precise measurements of the tensor analyzing power T_{20} in dA \rightarrow p(0°)X:

 T_{20} (H) = -0.558 ±0.150 at k=985 MeV/c T_{20} (C) = -0.351 ±0.116 at k=1000 MeV/c

- observation of the A_{yy} (relativistic deuteron tensor structure) dependence on 2 internal variables.

New **SPI** with high intensity and high values of the tensor and vector polarization is able to provide new stage in the shortrange deuteron spin structure studies.

However, new experiments generation has to be based on the existing experimental achievements and experience.

Non-nucleonic degrees of freedom

When the distances between the nucleons are comparable with the size of the nucleon, the nucleon-nucleon interaction is a non-local.

The fundamental degrees of freedom, quark and gluons in the frame of QCD, begin also to play a role at the internucleonic distances comparable with the size of the nucleon.

They can manifest as $\Delta\Delta$, NN*, N*N*, 6q etc.components.

Data: V.Punjabi et al., Phys.Lett.B350 (1995) 178 L.S.Azhgirey et al., Phys.Lett.B391 (1997) 22 L.S.Azhgirey et al., Phys.Lett.B387 (1996) 37

Polarization observables for polarized deuteron induced reactions

Target position is in F5

•The measurements of the tensor analyzing power T₂₀ and spin correlation C_{yy} in the ³He(d,p)⁴He reaction in the kinetic energy range between 1.0 and 1.75 GeV can be performed at the BM@N area.

•The polarization observables for the p(d,p)d, d(d,p)t and d(A,p(0°))X at intermediate and high energies also can be studied.

•Non-nucleonic degrees of freedom and baryonic resonances properties can be studied in the $d(A,d(0^\circ))X$ and $d(A,\pi^-(0^\circ))X$ reactions at different energies.

•The tensor analyzing power T_{20} can be studied for the meson production in the $d(A,3He(0^{\circ}))X$ reactions.

Polarization effects in the dd → ³**Hen(**³**Hp) reactions at Nuclotron energies**

The relativistic multiple scattering model was successfully used to describe the $dd \rightarrow {}^{3}Hen({}^{3}Hp)$ reactions in a GeV region at the Nuclotron. The calculations require a large amount of CPUs. The results were published in FBS, PRC, PPN.

N.Ladygina - theory A.Kurilkin – experiment

Measurement of the deuteron beam polarization at ITS using DSS detection system at 270 MeV

Vector Ay and tensor analyzing powers A_{yy} , A_{xx} and A_{xz} of dp- elastic scattering as a function of deuteron scattering angle in c.m.s. at deuteron beam energy of 270 MeV. \Box , Δ - the world data. Extrapolated values of the analyzing powers are marked by \bullet .

Cubic spline interpolation: (x_i,y_i) Ha [A,B] $f(x) = ax^3 + bx^2 + cx + d$ f''(A) = f''(B) = 0

K.Sekiguchi et al., Phys. Rev. C65 (2002) 034003 K.Sekiguchi et al., Phys. Rev.C70 (2004) 014001 K.Suda, et al., Nucl. Instr. Meth. in Phys. Res. A572 (2007) 745

Non-nucleonic degrees of freedom

When the distances between the nucleons are comparable with the size of the nucleon, the nucleon-nucleon interaction is a non-local.

The fundamental degrees of freedom, quark and gluons in the frame of QCD, begin also to play a role at the internucleonic distances comparable with the size of the nucleon.

They can manifest as $\Delta\Delta$, NN*, N*N*, 6q etc.components.

Data: V.Punjabi et al., Phys.Lett.B350 (1995) 178 L.S.Azhgirey et al., Phys.Lett.B391 (1997) 22 L.S.Azhgirey et al., Phys.Lett.B387 (1996) 37

Measurement of the deuteron beam polarization at ITS using DSS detection system at 270 MeV

Tensor p_{yy} and vector p_y polarization of the beam for "2-6" and "3-5" spin modes of PIS POLARIS as a function of the deuteron scattering angle in the cms.

$$\beta = -90.3^{\circ} \pm 1.2^{\circ}$$

$$F_{i}^{2} = \int \epsilon A_{i}^{2} d\Omega$$

$$F_{y} \sim 1.0^{*} \ 10^{-4}, F_{yy} \sim 1.8^{*}10^{-4}, F_{xx} \sim 0.8^{*}10^{-4}$$

Reference deuteron beam polarimeter at Nuclotron.
 P.K.Kurilkin et al., Nucl. Instr. and Meth. A 642 (2011) 45

Measurements of T_{20} and K_0 in dp \rightarrow pd at SATURNE2

C.F.Perdrisat, V.Punjabi - leaders

V.Punjabi et al., PLB350 (1995) 178

VPL -1992 I.M.Sitnik,V.P.Ladygin,M.P.Rekalo,PAN57(1994)2170

Behaviour of T_{20} and κ_0 is completely different for $dp \rightarrow pd$ and $dp \rightarrow pX$. Unexpected structures in T_{20} for $dp \rightarrow pd$ Different reaction mechanisms, different degrees of freedom(?)

Summary of the deuteron spin structure studies

- $u^{2}(k) + w^{2}(k)$ Extracted from dA \rightarrow pX and dp \rightarrow pd cross section data were found to be in agreement showing wide shoulder at k=300 MeV/c
 - T_{20} Strong deviation from RIA and ONE predictions: negative value at large k, smaller than $-\sqrt{2}$ at k=300 MeV/c

New observable: Transverse vector polarization transfer in dA \rightarrow pX

$$\kappa_0 = \frac{u(k)^2 - w(k)^2 - u(k) \cdot w(k) / \sqrt{2}}{u^2(k) + w^2(k)}$$

L.Frankfurt, M.Strikman, NPA405(1983)557 A.Boudard, C.Wilkin, JPG:NP11(1985)583