

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Update on Dielectron analysis with MPD

Sudhir Pandurang Rode

April 8, 2025

MPD Cross-PWG meeting

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

▲ ■ → < ■
 April 8, 2025

▲ ∃ ► ∃ =

- Optimization of fiducial and veto acceptance
- A look at the Low B sample.
- Conclusions

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Analysis Strategy

- \Rightarrow Three electron pools:
- \to Pool-1 fully reconstructed tracks^1 in fiducial area ($|\eta|<$ 0.7) $p_T\gtrapprox$ 110 MeV/c
- $\rightarrow\,$ Pool-2 fully reconstructed tracks in veto area $0.7 < |\eta| < 1.0$ $p_T \gtrapprox 110$ MeV/c.
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC.
 - $p_{\rm T}$ <= 110 MeV/c ightarrow not reaching the TOF.
 - $p_{\rm T} > 110~{\rm MeV/c}
 ightarrow$ reaching the TOF.
 - Step 1 No further pairing (NFP): Tagging between Pool 1 and Pool 2.
 - Step 2 Close TPC cut (CTC): Tagging between Pool 1 and 3, and pairs within certain M_{inv} and opening angle are removed.
 - Step 3: Rest of the tracks with $p_{\rm T} > 200$ MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

 ¹TOF and ECal matched tracks identified in the TPC, TOF and ECal E = SQC

 Sudhir Pandurang Rode
 Update on Dielectron analysis with MPD

 April 8, 2025
 3 / 25

MLP: Req. 34 (12.1M except Fid. < 0.6: 11.6M) Invariant mass: 0.2 to 1.5 GeV

	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$
	0.6	0.7	0.75	0.8	0.85	0.9
U	21491 ± 147	30976±176	35688±189	40566±201	45954±214	51297±226
В	$20504{\pm}143$	$29455 {\pm} 172$	34026 ± 184	38863 ± 197	44052±210	49267±222
U-B	987±205	1521 ± 246	1663 ± 264	1703±282	$1902 {\pm} 300$	2030±317
(U-B)/B	4.81±0.05	5.16±0.04	4.89±0.04	4.38±0.03	4.32±0.03	4.12±0.03
BFE	23	38	40	37	40	41
S	1359	1860	2071	2314	2534	2724
S/B	6.63	6.31	6.09	5.95	5.75	5.53
BFE	44	57	61	67	71	73

- B Combinatorial background approximated by like sign pairs.
- Fiducial acceptance was varied from $|\eta| <$ 0.6 to 0.9.
- The signal increases with acceptance but the background increases faster and consequently S/B decreases.
- Measured signal is underestimated compared to true reconstructed signal.

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

ULS, LS and Signal: MLP (Fid < 0.7) and (Fid < 0.9, $|\eta| <$ 1.2)

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025 5 / 25

ULS, LS and Signal: MLP

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025

6/25

MLP: Req. 34 (12.1M except Fid. < 0.6: 11.6M) Invariant mass: 0.65 to 1.5 GeV

	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$
	0.6	0.7	0.75	0.8	0.85	0.9
U	5485±74	8259±91	9724±99	$11212{\pm}106$	$12941{\pm}114$	14874 ± 122
В	4920±70	$7406{\pm}86$	8739±93	$10232{\pm}101$	$11917{\pm}109$	$13736{\pm}117$
U-B	$566{\pm}102$	$852{\pm}125$	985±136	$980{\pm}146$	$1025{\pm}158$	$1138{\pm}169$
(U-B)/B	11.50±0.23	$11.51{\pm}0.18$	11.27±0.17	9.57±0.13	8.60±0.11	8.28±0.10
BFE	31	46	53	45	42	45
S	562	774	876	971	1074	1167
S/B	11.42	10.45	10.03	9.49	9.01	8.49
BFE	30	38	42	44	46	48

- B Combinatorial background approximated by like sign pairs.
- Same numbers as previous table but for 0.65 GeV $< m_{inv}^{e^+e^-} < 1.5$ GeV.
- The measured signal and true reconstructed signal are close to each other in this region.

MLP: Req. 34 (12.1M except Fid. < 0.6: 11.6M) Invariant mass: 0.2 to 0.65 GeV

	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$	Fid. $<$
	0.6	0.7	0.75	0.8	0.85	0.9
U	16005 ± 127	22717 ± 151	25965±161	29354±171	33012±182	36423±191
В	$15584{\pm}125$	$22048 {\pm} 148$	25287 ± 159	28630 ± 169	$32135{\pm}179$	35531 ± 188
U-B	421±178	$669{\pm}212$	678±226	724±241	877±255	892±268
(U-B)/B	2.70±0.03	3.03±0.03	2.68±0.02	2.53±0.02	2.73±0.02	2.51±0.02
BFE	6	10	9	9	12	11
S	796	1086	1195	1343	1460	1557
S/B	5.11	4.93	4.73	4.69	4.54	4.38
BFE	20	26	28	31	32	33

- B Combinatorial background approximated by like sign pairs.
- Same numbers for 0.2 GeV $< m_{inv}^{e^+e^-} < 0.65$ GeV.
- Similar underestimation of measured signal.
- Deficit seems to remain intact even in case of two independent samples: e.g. (Fid < 0.7) and (Fid < 0.9 Fid < 0.7).
- Statistics or systematic?

Production Request 25 (31M): Fid. < 0.7

	1D	MLP	1D	MLP	1D	MLP
	0.2 to 1.5	5 GeV/c2	0.2 to 0.6	0.2 to $0.65~GeV/c2$.5 GeV/c2
U	37561±194	79304±282	29483±172	64071±253	9736±99	18742±137
В	$36329 {\pm} 191$	$76174{\pm}276$	28767 ± 170	$61803 {\pm} 249$	$9210{\pm}96$	$17794{\pm}133$
U-B	1232 ± 272	3130 ± 394	716 ± 241	2268±355	526 ± 138	$948{\pm}191$
(U-B)/B (%)	3.39±0.02	4.11±0.02	2.49±0.02	3.67±0.02	5.71±0.08	5.33±0.06
BFE	21	63	9	41	15	25
S	1647	3291	1025	2130	656	1244
S/B (%)	4.53	4.32	3.56	3.45	7.12	6.99
BFE	37	70	18	36	23	42

- B is combinatorial background approximated by like sign pairs.
- Similar numbers from previous results with request 25 production.
- Slight underestimation in case of 1D cuts, but within uncertainties, there is none in case of MLP.
- Hinting towards statistics issue in Request 34: though strong claim to be made after the check with more statstics.

ULS, LS and Signal: Req 25: 1D and MLP

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025 10 / 25

What can be done?

- The underestimate of the yield in the low mass region seems to be statistics.
- Would be interesting to have a new production with higher statistics.
- Similar to ρ, ω and φ decays, enhance η-Dalitz decays by some factor: Not as as large as 20 factor (e.g. 4 or 5).

向 ト イヨト イヨト ヨヨ のくら

Efficiency using 1D cuts: ϕ -dependence: Nhits > 39

- ϕ dependence of the electron reconstruction efficiency was studied.
- TPC sector boundaries along edge effect affect the efficiency and effect is significant for high pT tracks.
- For better understanding of the problem, it may be helpful to look at information available for such cases in the TPC.

▲ □ ► < ≥ ► < ≥ ►</p>
April 8, 2025

Efficiency using 1D cuts: ϕ -dependence: Nhits > 20

- ϕ dependence of the electron reconstruction efficiency was studied.
- TPC sector boundaries along edge effect affect the efficiency and effect is significant for high pT tracks.
- For better understanding of the problem, it may be helpful to look at information available for such cases in the TPC.
- For now, one can try to reduce the effect by lowering the lower limit on number of hits conditions (e.g from 39 to 20).

Sudhir Pandurang Rode

April 8, 2025

= 900

Prospects of using Low B sample (B = 0.2T) for dielectrons

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025

Low B sample in dielectron analysis

- It was suggested to use the low B sample in the dielectron analysis.
- As it would help in better reconstruction of low $p_{\rm T}$ tracks.
- Request 28: 10M events.
- New parameterizations were obtained for these studies.

伺 ト イヨト イヨト ヨヨー の々で

Low B: Minimum $p_{\rm T}$ to enter or exit the TPC

Cut-offs to enter or exit the TPC decreased with low B sample ($|\eta| \approx 0$).

- 30 MeV/c \rightarrow \approx 10 MeV/c.
- 90 MeV/c \rightarrow \approx 35 MeV/c.

• 110 MeV/c
$$ightarrow$$
 45 MeV/c.

Low and Normal B: Hit distributions

• As expected, less bending of the tracks provides better hit reconstruction at low and intermediate *p*_T.

April 8, 2025

Parameterizations

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

Low (Req28) and Normal (Req25) B

April 8, 2025 19 / 25

Low B

This would lead to significant increase in combinatorial background.

Conversions at large production radii are not rejected despite applying tight DCA selections.

Update on Dielectron analysis with MPD

Low and Normal B: DCAx distributions (Electrons within $|\eta| < 1.2$)

I. Secondaries (here, conversions electrons) have wider DCA in Low B compared Normal B.

II. Shape of primary electrons (all electrons except conversions) have similar shapes.

→ < Ξ →</p> April 8, 2025

- A - E-

Req. 25: B = 0.5T (31M), Req. 28: B = 0.2T (8M) 1D (Fid. < 0.7) Invariant mass: 0.2 to 1.5 GeV

Bef. No Further Pairing Aft. No Further Pairing Aft. Close TPC Cut

-	120	80
-	-	10 (5)
113926 ± 338	87733±296	37544±194
$85825{\pm}293$	57670 ± 240	$27190{\pm}165$
$113055{\pm}336$	$86901 {\pm} 295$	$36316{\pm}191$
$85369{\pm}292$	57348±239	$26840{\pm}164$
871±476	832±418	1228 ± 272
$456{\pm}414$	322±339	350±232
$0.77{\pm}0.00$	$0.96{\pm}0.00$	3.38±0.02
$0.53{\pm}0.00$	$0.56{\pm}0.00$	$1.30{\pm}0.01$
3	4	20
1	1	2
1793	1774	1647
348	317	297
1.59	2.04	4.54
0.41	0.55	1.11
14	18	37
-		•
	$\begin{array}{c} - \\ 113926 \pm 338 \\ 85825 \pm 293 \\ 113055 \pm 336 \\ 85369 \pm 292 \\ 871 \pm 476 \\ 456 \pm 414 \\ 0.77 \pm 0.00 \\ 0.53 \pm 0.00 \\ 3 \\ 1 \\ 1793 \\ 348 \\ 1.59 \\ 0.41 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$	$\begin{array}{c cccc} - & 120 \\ - & - \\ 113926 \pm 338 & 87733 \pm 296 \\ 85825 \pm 293 & 57670 \pm 240 \\ 113055 \pm 336 & 86901 \pm 295 \\ 85369 \pm 292 & 57348 \pm 239 \\ 871 \pm 476 & 832 \pm 418 \\ 456 \pm 414 & 322 \pm 339 \\ 0.77 \pm 0.00 & 0.96 \pm 0.00 \\ 0.53 \pm 0.00 & 0.56 \pm 0.00 \\ 3 & 4 \\ 1 & 1 \\ 1793 & 1774 \\ 348 & 317 \\ 1.59 & 2.04 \\ 0.41 & 0.55 \\ 14 & 18 \\ \end{array}$

• B - Combinatorial background approximated by like sign pairs.

Sudhir Pandurang Rode

22 / 25

ULS, LS and Signal: 1D

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025 23 / 25

Conclusions

- In dielectron analysis, optimization of fiducial and veto region is being studied.
- Signal increases with wide fiducial acceptance but background increases faster: more investigation needed.
- Reconstructed signal between 0.2 to 0.65 GeV/c is underestimated: previous results with production 25 hinting towards statistics issue.
- Perhaps, enhancement of η -Dalitz decays might help reconstructing the signal in low mass region.
- TPC sector boundaries and edge effect, affects efficiency: can improve a bit by reducing the number of hits condition.
- Low magnetic field provides better track reconstruction of low pT tracks \rightarrow at the cost of poor conversion rejection, and worse momentum and mass resolution.
- S/B ratio is worse than Normal B scenario (Request 25) due to large CB from conversions: however, the tuning of the pair reconstruction cuts suitable for low B might bring some improvement.

THANK YOU

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BACK-UP

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

April 8, 2025

What can be done?

- Similar to ρ, ω and φ decays, enhance η-Dalitz decays by 20 or less factor.
- However, firstly, one needs to check if 20 factor enhancement in request 34 and susequent reweighting has brought any distortion to the ULS and LS spectra.
- For this check, along with Request 25 and Request 34 sample, a private production of half a million events was generated without enhancing the branching ratio.
- Rest of the details were kept same as Request 34.

Comparision between LS: Private (547K events)

- No flat enhancement in LS after 20 factor.
- LS after reweighting back 20 factor have simialr shape as without enhancement case.

April 8, 2025

< E

Comparision between LS and (ULS-TrueSignal)

- In the analysis, combinatorial background is approximated by Like sign.
- It seems no distortion within actual combinatorial (ULS-True signal) is visible either.
- Thus, enhancing η-Dalitz may work as well: Similar excercise can be carried out for this.

Sudhir Pandurang Rode

Comparision between LS: Private (547K events)

- No flat enhancement in LS after 20 factor.
- LS after reweighting back 20 factor have simialr shape as without enhancement case.

April 8, 2025

47 ▶

A B A A B A

Comparision between LS and (ULS-TrueSignal)

- In the analysis, combinatorial background is approximated by Like sign.
- It seems no distortion within actual combinatorial (ULS-True signal) is visible either.
- Thus, enhancing η-Dalitz may work as well: Similar excercise can be carried out for this.

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

Low and Normal B: DCAy distributions (Electrons within $|\eta| < 1.2$)

I. Same conclusion for DCAy.

< ■ > < ■ > < ■ >
 April 8, 2025

EL SQA

Low and Normal B: DCAz distributions (Electrons within $|\eta| < 1.2$)

I. However, z-component of DCA has similar shapes in both Low B and Normal B.

April 8, 2025

< E

Low (Req28) and Normal (Req25) B: Momentum resolution

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

9/28

Low (Req28) and Normal (Req25) B: Mass resolution

I. Along with momentum, mass resolution also gets worse with low magnetic field.

April 8, 2025

(日本)

Low and Normal B: DCAx distributions (Electrons within $|\eta| < 1.2$)

I. Secondaries (here, conversions electrons) have wider DCA in Low B compared Normal B.

II. Shape of primary electrons (all electrons except conversions) have similar shapes.

→ < Ξ →</p> April 8, 2025

< E

EL SQA

1D(Ed < 0.7)	Req. 25: $B = 0.5T$ (31M), Req. 28: $B = 0.2T$ (8M)
1D (FIG. < 0.7)	Invariant mass: 0.2 to 1.5 GeV

		Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\rm T}>110~(50)~{ m MeV})$
		NFP	NFP	<= 110 (50) MeV)	TPC+ECal	TPC (TOF or Not)
	Mass	-	120	80	80	80
	Angle	-	-	10	10	5
	U	$113926{\pm}338$	87733±296	64731±254	55024±235	37544±194
	U	$85825{\pm}293$	57670 ± 240	$50415{\pm}225$	$41858{\pm}205$	$27190{\pm}165$
	В	$113055 {\pm} 336$	$86901 {\pm} 295$	$63761 {\pm} 253$	54009 ± 232	$36316{\pm}191$
	В	$85369 {\pm} 292$	$57348 {\pm} 239$	$50149{\pm}224$	$41646 {\pm} 204$	$26840{\pm}164$
	U-B	$871{\pm}476$	$832{\pm}418$	970±358	$1015{\pm}330$	$1228{\pm}272$
	U-B	$456{\pm}414$	322±339	$266{\pm}317$	212 ± 289	350±232
(U-B)/B (%)	$0.77 {\pm} 0.00$	$0.96{\pm}0.00$	$1.52{\pm}0.01$	$1.88{\pm}0.01$	3.38±0.02
(Ų-B)/B (%)	$0.53{\pm}0.00$	$0.56{\pm}0.00$	$0.53{\pm}0.00$	$0.51{\pm}0.00$	$1.30{\pm}0.01$
	BFE	3	4	7	9	20
	BFE	1	1	1	1	2
	S	1793	1774	1743	1687	1647
	S	348	317	308	302	297
	S/B (%)	1.59	2.04	2.73	3.12	4.54
	S/B (%)	0.41	0.55	0.61	0.73	1.11
	BFE	14	18	24	26	37
	BFE	1	1	1	1	2

• B - Combinatorial background approximated by like sign pairs.

Sudhir Pandurang Rode

12 / 28

MID.	Dog 24 (10.1	(Fid. $<$	0.7), (Fid. < 0)	. 75) , (Fid. <	(0.8), (Fid. < 0.85)
IVILP:	Req. 54 (12.1	(Fid. $<$	0.9, $ \eta <$ 1.2)	Invariant ma	ss: 0.2 to 0.65 GeV
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\mathrm{T}} > 110 \; \mathrm{MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U	48438±220	30266±174	22570 ± 150	20046±142	16005 ± 127
U	$69438{\pm}264$	$43458 {\pm} 208$	32023 ± 179	$28441 {\pm} 169$	22717 ± 151
U	$79737{\pm}282$	$49960{\pm}224$	$36574 {\pm} 191$	$32468 {\pm} 180$	$25965{\pm}161$
U	$90316{\pm}301$	56777 ± 238	41205 ± 203	36601 ± 191	$29354{\pm}171$
U	101418 ± 318	$64084{\pm}253$	$46188 {\pm} 215$	41087 ± 203	33012±182
U	$112167 {\pm} 335$	$71101{\pm}267$	$50913{\pm}226$	45263±213	36423±191
В	$47958{\pm}219$	$29595{\pm}172$	$21968 {\pm} 148$	$19547 {\pm} 140$	$15584{\pm}125$
В	68763 ± 262	$42694{\pm}207$	$31216{\pm}177$	$27713 {\pm} 166$	22048±148
В	$79109{\pm}281$	$49194{\pm}222$	$35760 {\pm} 189$	$31755{\pm}178$	$25287{\pm}159$
В	89525±299	55812 ± 236	40413±201	35865 ± 189	28630±169
В	100491 ± 317	62958 ± 251	45288±213	40221±201	32135±179
В	111328 ± 334	70085 ± 265	50051 ± 224	44527 ± 211	35531 ± 188

• B - Combinatorial background approximated by like sign pairs. (Fid. < 0.6, 11.6M)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

		1 N/I N			
VILF. IN	eq. 54 (12.	(Fid. <	$<$ 0.9, $ \eta <$ 1.2) Invariant n	nass: 0.2 to 0.65 Ge
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\rm T} > 110 \; { m MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U-B	480±310	670±245	601±211	$500{\pm}199$	421±178
U-B	676±372	$764{\pm}294$	$807{\pm}251$	727±237	669±212
U-B	627±399	$767{\pm}315$	$814{\pm}269$	713 ± 253	678±226
U-B	790±424	965±336	791 ± 286	736±269	724±241
U-B	926±449	$1126{\pm}356$	900±302	865 ± 285	877±255
U-B	839±473	$1016{\pm}376$	$862{\pm}318$	735±300	892±268
S	924	876	855	822	796
S	1247	1186	1157	1118	1086
S	1372	1307	1273	1229	1195
S	1549	1478	1433	1386	1343
S	1690	1617	1557	1509	1460
S	1813	1731	1660	1611	1557

(Fid. < 0.7), (Fid. < 0.75), (Fid. < 0.8), (Fid. < 0.85) V

B - Combinatorial background approximated by like sign pairs. ۲

-

ELE SQC

MLP [,] Rea	34 (12 1M)	(Fid. < 0 .	.7), (Fid. < 0.7	5) , (Fid. < 0	0.8), (Fid. < 0.85)
MEL . Req.	51 (12.100)	(Fid. < 0.	.9, $ \eta <$ 1.2) In	ivariant mass	s: 0.2 to 0.65 GeV
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\mathrm{T}} > 110 \; \mathrm{MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
(U-B)/B (%)	$1.00{\pm}0.01$	2.26±0.02	2.74±0.03	2.56±0.03	2.70±0.03
(U-B)/B (%)	$0.98{\pm}0.01$	$1.79{\pm}0.01$	$2.58 {\pm} 0.02$	$2.63 {\pm} 0.02$	3.03±0.03
(U-B)/B (%)	$0.79{\pm}0.00$	$1.56{\pm}0.01$	$2.28{\pm}0.02$	$2.25{\pm}0.02$	$2.68{\pm}0.02$
(U-B)/B (%)	$0.88 {\pm} 0.00$	$1.73 {\pm} 0.01$	$1.96{\pm}0.01$	$2.05 {\pm} 0.02$	2.53±0.02
(U-B)/B (%)	$0.92{\pm}0.00$	$1.79{\pm}0.01$	$1.99{\pm}0.01$	2.15 ± 0.02	2.73±0.02
(U-B)/B (%)	0.75 ± 0.00	$1.45{\pm}0.01$	1.72 ± 0.01	$1.65{\pm}0.01$	2.51 ± 0.02
S/B (%)	1.93	2.96	3.89	4.20	5.11
S/B (%)	1.81	2.78	3.71	4.04	4.93
S/B (%)	1.73	2.66	3.56	3.87	4.73
S/B (%)	1.73	2.65	3.55	3.86	4.69
S/B (%)	1.68	2.57	3.44	3.75	4.54
S/B (%)	1.63	2.47	3.32	3.62	4.38

• B - Combinatorial background approximated by like sign pairs.

/11	P. Roa	34 11	2 1 1 1 1		· · · · · · · · · · · · · · · · · · ·		
	i . iteq.	54 (1.	2.1111)	(Fid. $<$ 0.9, $ \eta $	< 1.2) Inva	riant mass: 0.2 to 0).65
		Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\rm T} > 110 \; { m MeV})$	
		NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)	
	Mass	-	120	80	80	80	
	Angle	-	-	10	10	5	
	BFE	2	8	8	6	6	
	BFE	3	7	10	9	10	
	BFE	2	6	9	8	9	
	BFE	3	8	8	7	9	
	BFE	4	10	9	9	12	
	BFE	3	7	7	6	11	
	BFE	9	13	16	17	20	
	BFE	11	16	21	22	26	
	BFE	12	17	22	23	28	
	BFE	13	19	25	26	31	
	BFE	14	21	26	28	32	
	BFE	15	21	27	29	33	

(Fid. < 0.7), (Fid. < 0.75), (Fid. < 0.8), (Fid. < 0.85) 5 GeV

B - Combinatorial background approximated by like sign pairs. ۲

ELE DOG

	$2 - \pi = 24 (12)$	(Fid. <	0.7), (Fid. < 0	.75), (Fid. <	< 0.8), (Fid. < 0.85)
IVILP: r	(12.)	(Fid. $<$	0.9, $ \eta < 1.2$)	Invariant ma	ass: 0.65 to 1.5 GeV
	Bef.	Aft.	Aft. CTC (<i>p</i> _T	After CTC	$(p_{\mathrm{T}} > 110 \; \mathrm{MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U	$15730 {\pm} 125$	$10034{\pm}100$	7622±87	6761±82	5485±74
U	$23849 {\pm} 154$	$15306{\pm}124$	$11480{\pm}107$	$10174{\pm}101$	$8259{\pm}91$
U	$28372 {\pm} 168$	$18207 {\pm} 135$	$13571 {\pm} 116$	$12023{\pm}110$	9724±99
U	33064 ± 182	21223 ± 146	$15638 {\pm} 125$	$13832{\pm}118$	11212 ± 106
U	38609 ± 196	24821 ± 158	$18107{\pm}135$	$15997 {\pm} 126$	12941 ± 114
U	44572 ± 211	$28822{\pm}170$	$20815{\pm}144$	$18399{\pm}136$	14874 ± 122
В	$15087 {\pm} 123$	9333±97	7010 ± 84	6233 ± 79	4920±70
В	$22936{\pm}151$	$14264{\pm}119$	$10568{\pm}103$	$9378{\pm}97$	7406±86
В	$27280{\pm}165$	$17033{\pm}131$	$12486{\pm}112$	$11063{\pm}105$	8739±93
В	32033±179	20100 ± 142	14624 ± 121	12946 ± 114	10232 ± 101
В	37519 ± 194	23664 ± 154	17040 ± 131	15114 ± 123	11917 ± 109
В	43451±208	27569 ± 166	19644 ± 140	17349 ± 132	13736 ± 117

• B - Combinatorial background approximated by like sign pairs. (Fid. < 0.6, 11.6M)

	eg 34 (12 1	(Fid. <	0.7), (Fid. $<$	0.75), (Fid.	< 0.8), (Fid. $<$ 0.85
	eq. 54 (12.1	(Fid. <	0.9, $ \eta < 1.2$) Invariant m	nass: 0.65 to 1.5 Ge\
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{ m T}>110~{ m MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U-B	643±176	700±139	612±121	529±114	566±102
U-B	$913{\pm}216$	$1042 {\pm} 172$	$912{\pm}148$	$796{\pm}140$	$852{\pm}125$
U-B	$1092{\pm}236$	$1174{\pm}188$	$1085{\pm}161$	$959{\pm}152$	985±136
U-B	$1032 {\pm} 255$	1123 ± 203	$1014{\pm}174$	$885{\pm}164$	980±146
U-B	$1090{\pm}276$	$1157 {\pm} 220$	$1067 {\pm} 187$	$882{\pm}176$	$1025 {\pm} 158$
U-B	$1120{\pm}297$	$1253{\pm}237$	$1170{\pm}201$	$1050{\pm}189$	$1138{\pm}169$
S	635	611	597	574	562
S	880	846	822	793	774
S	1000	960	929	897	876
S	1112	1068	1029	994	971
S	1232	1185	1137	1099	1074
S	1345	1294	1235	1194	1167

• B - Combinatorial background approximated by like sign pairs.

MI P. Rea	34 (12 1M)	(Fid. $<$ 0.7), (Fid. $<$ 0.75), (Fid. $<$ 0.8), (Fid. $<$ 0.85)				
MEL . Req.	54 (12.110)	(Fid. < 0 .	.9, $ \eta <$ 1.2) Ir	ivariant mass	s: 0.65 to 1.5 GeV	
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{ m T}>110~{ m MeV})$	
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)	
Mass	-	120	80	80	80	
Angle	-	-	10	10	5	
(U-B)/B (%)	4.26±0.05	$7.50{\pm}0.11$	8.73±0.14	$8.48 {\pm} 0.15$	11.50 ± 0.23	
(U-B)/B (%)	$3.98 {\pm} 0.04$	$7.31{\pm}0.09$	$8.63{\pm}0.12$	$8.49{\pm}0.12$	$11.51{\pm}0.18$	
(U-B)/B (%)	$4.00 {\pm} 0.03$	$6.89{\pm}0.07$	$8.69{\pm}0.11$	$8.67{\pm}0.11$	$11.27{\pm}0.17$	
(U-B)/B (%)	$3.22{\pm}0.03$	$5.58{\pm}0.05$	$6.94 {\pm} 0.08$	$6.84{\pm}0.08$	9.57±0.13	
(U-B)/B (%)	$2.91{\pm}0.02$	$4.89 {\pm} 0.04$	$6.26 {\pm} 0.07$	$5.84{\pm}0.07$	$8.60{\pm}0.11$	
(U-B)/B (%)	$2.58{\pm}0.02$	$4.55{\pm}0.04$	$5.96{\pm}0.06$	$6.05 {\pm} 0.06$	8.28±0.10	
S/B (%)	4.21	6.55	8.51	9.21	11.42	
S/B (%)	3.84	5.93	7.78	8.45	10.45	
S/B (%)	3.66	5.64	7.44	8.11	10.03	
S/B (%)	3.47	5.31	7.04	7.68	9.49	
S/B (%)	3.28	5.01	6.67	7.27	9.01	
S/B (%)	3.10	4.69	6.29	6.88	8.49	

• B - Combinatorial background approximated by like sign pairs.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	 i . itey.	J 4 (12	2.1101)	(Fid. $<$ 0.9, $ \eta $	< 1.2) Inva	riant mass: 0.65 to 1
NFP NFP <= 110 MeV) TPC+ECal TPC (TOF or Not Mass - 120 80 80 80 Angle - - 10 10 5 BFE 13 25 26 22 31 BFE 18 37 38 32 46 BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 19 28 35 37 44 BFE 20 29 37 39 46		Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{ m T}>110~{ m MeV})$
Mass - 120 80 80 80 Angle - - 10 10 5 BFE 13 25 26 22 31 BFE 18 37 38 32 46 BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48		NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Angle - 10 10 5 BFE 13 25 26 22 31 BFE 18 37 38 32 46 BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	Mass	-	120	80	80	80
BFE 13 25 26 22 31 BFE 18 37 38 32 46 BFE 21 39 45 40 53 BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	Angle	-	-	10	10	5
BFE 18 37 38 32 46 BFE 21 39 45 40 53 BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	13	25	26	22	31
BFE 21 39 45 40 53 BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	18	37	38	32	46
BFE 16 30 34 29 45 BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	21	39	45	40	53
BFE 16 28 32 25 42 BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	16	30	34	29	45
BFE 14 28 34 31 45 BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	16	28	32	25	42
BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	14	28	34	31	45
BFE 13 19 24 25 30 BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48						
BFE 17 24 31 32 38 BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	13	19	24	25	30
BFE 18 26 33 35 42 BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	17	24	31	32	38
BFE 19 28 35 37 44 BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	18	26	33	35	42
BFE 20 29 37 39 46 BFE 20 30 38 40 48	BFE	19	28	35	37	44
BFE 20 30 38 40 48	BFE	20	29	37	39	46
	BFE	20	30	38	40	48

MLP: Req. 34 (12.1M) (Fid. < 0.7), (Fid. < 0.75), (Fid. < 0.8), (Fid. < 0.85) (Fid. < 0.9, $|\eta| < 1.2$) Invariant mass: 0.65 to 1.5 GeV

• B - Combinatorial background approximated by like sign pairs.

MID.	$D_{00} = 24 (12.1)$	(Fid. $<$	J.7), (Fid. < 0)	(15), (Fid. <	(0.8), (Fid. < 0.85)
IVILF.	req. 54 (12.1	(Fid. $<$	0.9, $ \eta <$ 1.2)	Invariant ma	ss: 0.2 to 1.5 GeV
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\mathrm{T}} > 110 \; \mathrm{MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U	64168±253	40299±201	30192±174	26808 ± 164	21491±147
U	$93288{\pm}305$	$58764{\pm}242$	43503±209	$38615 {\pm} 197$	$30976 {\pm} 176$
U	$108108 {\pm} 329$	$68167{\pm}261$	$50145{\pm}224$	$44490 {\pm} 211$	$35688{\pm}189$
U	$123380{\pm}351$	78000 ± 279	56843 ± 238	50433 ± 225	40566±201
U	140027 ± 374	$88905 {\pm} 298$	64295 ± 254	57083±239	$45954{\pm}214$
U	$156738 {\pm} 396$	$99924{\pm}316$	$71728 {\pm} 268$	63662 ± 252	$51297{\pm}226$
В	$63046{\pm}251$	$38929 {\pm} 197$	28978 ± 170	25779 ± 161	$20504{\pm}143$
В	$91699{\pm}303$	$56958{\pm}239$	$41785{\pm}204$	37091 ± 193	$29455{\pm}172$
В	$106389 {\pm} 326$	$66226 {\pm} 257$	48246±220	$42818 {\pm} 207$	34026±184
В	$121558 {\pm} 349$	75912 ± 276	55037±235	48811 ± 221	38863±197
В	138011 ± 371	86622±294	62328±250	55336 ± 235	44052±210
В	154779 ± 393	97654 ± 312	69695±264	61876 ± 249	49267±222

• B - Combinatorial background approximated by like sign pairs. (Fid. < 0.6, 11.6M)

	og 34 (10 1	(Fid. <	0.7), (Fid. $<$	0.75), (Fid.	< 0.8), (Fid. $<$ 0.85
VILF. IX	eq. 54 (12.1	(Fid. $<$	0.9, $ \eta < 1.2$) Invariant m	nass: 0.2 to 1.5 GeV
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{ m T}>110~{ m MeV})$
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U-B	1122±357	1370 ± 281	1214±243	1028±229	987±205
U-B	$1589{\pm}430$	$1806{\pm}340$	$1719{\pm}292$	$1523 {\pm} 275$	$1521{\pm}246$
U-B	$1720{\pm}463$	$1941{\pm}367$	$1899{\pm}314$	$1672 {\pm} 295$	1663 ± 264
U-B	$1822{\pm}495$	2088±392	1806 ± 334	1622 ± 315	1703±282
U-B	2016 ± 527	2283±419	$1967 {\pm} 356$	1747±335	1902±300
U-B	$1959{\pm}558$	2270±444	2033±376	$1786{\pm}354$	2030±317
S	1559	1487	1452	1396	1359
S	2127	2032	1979	1911	1860
S	2372	2267	2202	2126	2071
S	2661	2546	2462	2380	2314
S	2922	2802	2694	2608	2534
S	3158	3024	2895	2806	2724

• B - Combinatorial background approximated by like sign pairs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ のへの

MLP: Req.	34 (12.1M)	(Fid. < 0.7), (Fid. < 0.75), (Fid. < 0.8), (Fid. < 0.85)				
	0. (11.1.1.)	(Fid. < 0.	.9, $ \eta < 1.2)$ Ir	ivariant mass	s: 0.2 to 1.5 GeV	
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	After CTC	$(p_{\mathrm{T}} > 110 \; \mathrm{MeV})$	
	NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)	
Mass	-	120	80	80	80	
Angle	-	-	10	10	5	
(U-B)/B (%)	$1.78 {\pm} 0.01$	3.52±0.03	4.19±0.03	3.99±0.03	4.81±0.05	
(U-B)/B (%)	$1.73{\pm}0.01$	$3.17{\pm}0.02$	4.11±0.03	$4.11 {\pm} 0.03$	$5.16{\pm}0.04$	
(U-B)/B (%)	$1.62{\pm}0.01$	$2.93{\pm}0.02$	$3.94{\pm}0.03$	$3.91{\pm}0.03$	4.89±0.04	
(U-B)/B (%)	$1.50{\pm}0.01$	$2.75{\pm}0.01$	3.28±0.02	$3.32{\pm}0.02$	4.38±0.03	
(U-B)/B (%)	$1.46{\pm}0.01$	$2.64{\pm}0.01$	$3.16{\pm}0.02$	$3.16{\pm}0.02$	4.32±0.03	
(U-B)/B (%)	$1.27{\pm}0.00$	$2.32{\pm}0.01$	$2.92{\pm}0.02$	$2.89{\pm}0.02$	4.12±0.03	
S/B (%)	2.47	3.82	5.01	5.42	6.63	
S/B (%)	2.32	3.57	4.74	5.15	6.31	
S/B (%)	2.23	3.42	4.56	4.96	6.09	
S/B (%)	2.19	3.35	4.47	4.88	5.95	
S/B (%)	2.12	3.23	4.32	4.71	5.75	
S/B (%)	2.04	3.10	4.15	4.53	5.53	

• B - Combinatorial background approximated by like sign pairs.

1L	P: Req.	34 (1.	2.11VI)	(Fid. $<$ 0.9, $ \eta $	< 1.2) Inva	riant mass: 0.2 to 1.5
Bef. Aft.		Aft. CTC ($p_{\rm T}$	After CTC	$(p_{ m T}>110{ m MeV})$		
		NFP	NFP	<= 110 MeV)	TPC+ECal	TPC (TOF or Not)
	Mass	-	120	80	80	80
	Angle	-	-	10	10	5
	BFE	10	24	25	20	23
	BFE	14	28	35	31	38
	BFE	14	28	37	32	40
	BFE	14	28	29	26	37
	BFE	15	30	31	27	40
	BFE	12	26	29	25	41
	BFE	19	28	35	37	44
	BFE	24	36	46	48	57
	BFE	26	38	49	51	61
	BFE	29	42	54	57	67
	BFE	31	45	57	60	71
	BFE	32	46	59	62	73

MLP: Req. 34 (12.1M) (Fid. < 0.7), (Fid. < 0.75), (Fid. < 0.8), (Fid. < 0.85) (Fid. < 0.9, $|\eta| < 1.2$) Invariant mass: 0.2 to 1.5 GeV

• B - Combinatorial background approximated by like sign pairs.

< A > <

▲ ∃ ► ∃ =

TOF Matching cut

25 / 28

Step-wise efficiency: Req 34

Update on Dielectron analysis with MPD

Revised Analysis Strategy

- \Rightarrow Three electron pools:
- \rightarrow Pool-1 fully reconstructed tracks^2 in fiducial area (| $\eta|$ < 0.7) $p_{\rm T} \gtrapprox$ 110 MeV/c
- $\rightarrow\,$ Pool-2 fully reconstructed tracks in veto area 0.7 $<|\eta|<$ 1.0 $p_{\rm T}\gtrapprox$ 110 MeV/c.
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC.
 - $p_{\rm T}$ <= 110 MeV/c ightarrow not reaching the TOF.
 - $p_{\rm T} > 110~{\rm MeV/c}
 ightarrow$ reaching the TOF.
 - Step 1 No further pairing (NFP): Tagging between Pool 1 and Pool 2.
 - Step 2 Close TPC cut (CTC): Tagging between Pool 1 and 3, and pairs within certain M_{inv} and opening angle are removed.
 - Step 3: Rest of the tracks with $p_{\rm T} > 200$ MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

Track selection - 1D cuts analysis

- ightarrow Pool-1 fully reconstructed tracks 3 in fiducial area ($|\eta|$ < 0.7)
 - NHits > 39, DCA < 3σ , TPC dEdX (p dep. (p < 0.8) and -1 to 2σ (p > 0.8)), TOF Matching (d ϕ and dz < 3σ), TOF (-2 to 2σ), ECal PID (p dep. < E/p < 1.5 and m² < 2σ), ECal Matching (< 3σ).
- ightarrow Pool-2 fully reconstructed tracks in veto area (0.7 < $|\eta|$ < 1.0) (Same cuts.).
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC.
 - $p_T <= 110 \text{ MeV/c} \rightarrow \text{not matched in TOF and ECal} (|\eta|<2.5, \text{ NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-4 \text{ to } 4\sigma)).$
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in TOF but matched in ECal} (|\eta| < 2.5, \text{NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-3 to 3\sigma), \text{ECal} (p dep. < E/p < 1.5 and m² < 2\sigma, \text{ECal Matching} (< 3\sigma)).$
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in ECal but may or may not in TOF} (|\eta| <2.5, NHits > 10, DCA < 5\sigma, TPC dEdX (-1 to 2<math>\sigma$), TOF PID (if matched).
 - No further pairing (NFP): $M_{\rm inv} < 120 \text{ MeV}/c^2$.
 - Close TPC cut (CTC): $M_{\rm inv} < 80 \ {\rm MeV}/c^2$ and opening angle $< 10 \ {\rm or} \ 5^o$.