

Проведение фундаментальных исследований в области больших р_т на выведенных пучках Нуклотрона

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский

04.04.2025 Семинар ЛФВЭ

План доклада

- Мотивация
 - Уникальная физика
 - Высокая интенсивность и поляризованные пучки Нуклотрона
- Программа исследований
- Установка
- Планирование

Мотивация I Уникальная физика

- Спиновые эффекты с большими р_т в полной изотопике, включая $n \uparrow + n \uparrow$
- Эксклюзивные реакции, в которых ожидается проявление дикварков, определение их характеристик
- Полный набор измеряемых гиперонов, в том числе в контекте проблем астрофизики
- Новый уровень в изучении кумулятивных процессов, в т.ч. В полуэксклюзивной постановке
- Инновационные 3D нейтронные детекторы большого аксептанса
- Фемтоскопия применительно к специально отобранным процесам или слабоизученных пар (Σр, pd,...)

+ Поляризованные и криогенные мишени

Некоторые проблемы современной нпКХД

- Большие необъяснённые спиновые эффекты при √(s) ~ 2 5 ГэВ
- Нет данных по n⁺ + n⁺ взаимодействиям для проверки нарушения изотопической симметрии в сильных взаимодействиях
- Дикварки (в т.ч. странные): используются в моделях (в т.ч. для описания нейтронных звёзд), но нет прямых доказательств существования
- Повышенный выход барионов и дейтронов в области р_т > 0,5 ГэВ/с
- Свойства многонуклонных (многокварковых) систем мало изучены и нет определённости в их природе (флуктоны, SRC и др.)
- Роль дикварков, странных кварков в многонуклонных (многокварковых) системах (и в эволюции нейтронных звёзд?)

Спиновая физика

E.A. Crosbie et al., PR D23, 600

Большая поляризация гиперонов в области p_T > 0.5 ГэВ/с Даже в неполяризованных столкновениях

A.D. Krish http://arxiv.org/abs/1001.0790v1

Упругие реакции с поляризованным $p\uparrow+n\uparrow$ при 90° с.ц.м.

- $p\uparrow + p\uparrow \rightarrow p\uparrow + p\uparrow$ для калибровки
- $p\uparrow + n\uparrow \longrightarrow p\uparrow + n\uparrow$ мало данных
- $n\uparrow + n\uparrow \longrightarrow n\uparrow + n\uparrow$ нет данных

Поиск нарушения изотопической симметрии в сильном взаимодействии при больших pT (флейворной универсальности между u и d кварками)

Эксклюзивные NN реакции при $x_T \sim 1$ для $\sqrt{(s)} < 6$ ГэВ N $\uparrow + N\uparrow \rightarrow BB + MM$ где B (p, n, $\Lambda, \Delta, \Sigma, ...$), M ($\pi, K, ...$) Механизмы поляризации гиперонов

$$\begin{split} & N\uparrow + N\uparrow \longrightarrow BB(\Lambda\Lambda) + \pi \ \pi \ (KK) \\ & N\uparrow + N\uparrow \longrightarrow \Delta \Delta \end{split}$$

ФОДС

В.В.Абрамов и др.,

Сильные эффекты при снижении энергии Описание данных с помощью дикварков

The subprocesses diagrams giving contributions to the B = N, Λ° -baryon production in hard NN -collision: a) the b) the diquark-diquark subprocess; c),d) the double

В.Т. Ким

N Quer And N

ЪN

quark-diquark collisions.

Дикварки

Эксклюзивные реакции при больших рт Флэйворный состав и спиновые состояния

Измеряя отношения выходов π^{\pm} и π^{0} , можно получить указания на наличие и состав дикварков

Повышенный выход гиперонов может послужить указанием на взаимодействие с дикварком 8

Кумулятивные процессы, SRC и/или флуктоны

eA - program at JLab

RNP - program at JINR

Многокварковые (многонуклонные) состояния проявляются как в hA, так и в глубоконеупругих еA

пр корреляции сильно отличаются от рр

НИЯУ

Флуктон-флуктонные взаимодействия

10

- Использование дважды-кумулятивных частиц
 @90° в с.ц.м. в качестве триггера
- В центральной области быстрот кинематические границы дважды кумулятивных процессов наиболее сильно отстоят от 1N + xN

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Астрофизический семинар ФТИ 2025.03

Флуктон-флуктонные взаимодействия

- Использование дважды-кумулятивных частиц
 @90° в с.ц.м. в качестве триггера
- Эксперимент: Выход за кинематические границы 2N + 2N
- Не изучена экспериментально система отдачи

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Астрофизический семинар ФТИ 2025.03

Флуктон-флуктонные взаимодействия

- Система отдачи «холодная» (бр→0) и плотная (бх→0)
- Тогда должны быть существенны ограничения принципа Паули
- Выход: бозонизация, дикварки, рождение странности...

Аналогии с ядрами нейтронных звёзд и сверхновыми???

J. Schaffner-Bielich, Nucl. Phys. A 835 (2010) 279

- The Σ-N interaction is not well constrained

Many-body interactions and couplings become increasingly important at higher densities
 «Constraining the p-Σ° interaction for the first time employing femtoscopy in ALICE» Andi Mathis on behalf of the ALICE XIV Workshop on Particle Correlations and Eemtoscopy 4 June 2019

Странность в плотной ядерной материи и нейтронных звёздах

С ростом плотности в нейтронных звёздах вырастает влияние запрета Паули Выход 1* : рождение Σ⁻ (в т.ч. для компенсации электрического заряда р⁺) Выход 2 : (при дальнейшем росте плотности) рождение п→Λ⁰ (Σ⁰)

стает влияние запрета Паули ректрического заряда p⁺) кдение $n \rightarrow \Lambda^{0} (\Sigma^{0})$ * Schaffner-Bielich NPA 835 (2010) 279 * Schaffner-Bielich NPA 835 (2010) 279

Figure 4: Σ^0/Λ results versus collision \sqrt{s} ($\sqrt{s_{\rm NN}}$ for p/d+A) [1]. Meson-nucleon reaction results are excluded for clarity, but exist only at intermediate energies and lie in the same range. The dashed line is the ratio of isospin degeneracy factors (1/3).

G. Van Buren (for the STAR Collaboration) arXiv:nucl-ex/0512018

Дикварки и отношения Λ/Σ

Зависимость изоспина и состава дикварков

From: Craig Roberts <cdroberts.phy.anl@gmail.com>

Craig D. Roberts et.al. Phys. Rev. C 96, 015208:

Λ (изоспин=**0**): [ud]s, [us]d-[ds]u, {us}d-{ds}u Σ⁰ (изоспин=**1**): [us]d+[ds]u, {us}d+{ds}u

в Σ⁰ разрешены только странные дикварки

«As you note below, depending on the assumed reaction mechanism, this difference in diquark content could affect the Lambda/Sigma production ratio in AA collisions.»

Подробнее об этих и других сюжетах – в докладе Степана Шиманского

Экспериментальная установка (v0.0)

Мишени

р, d, He³,... (в т.ч. поляризованные) ОИЯИ

Вершинный детектор оияи

ТОГ и Трекер ТОГ: At < 100пс

СП тороидальный магнит

ИЯФ СО РАН

Нейтронный детектор

Аксептанс ~0.25 sr (~40% полного аксептанса в центральной области быстрот)
Временное разрешение < 150пс
△р/р < 2% ⇒ PID, трекинг (вместе с вершинным детектором)

ZDC, спектаторы

17

Дипольный магнит и детекторы малых углов

Дипольный магнит

•Регистрация спектаторов •ZDC

Нейтронный детектор важен не только для регистрации нейтронов, но и гиперонов

Высокогранулированный нейтронный детектор HGND

3D детектор Аналоги: ZDC для NICA и HGND для BM@N

Регистрация сигнала в каждой ячейке

- Измерение нейтронов по времени пролёта
- ► σ(t) < 150 пс</p>
- ~5 ячеек на нейтрон
- Регистрация >1 нейтрона в модуле
- Регистрация p, d, γ (с заменой поглотителя на BGO)...

Поглотитель (1) и 9 сцинтилляционных ячеек (2) помещены в светонепроницаемую коробку (3), которая закрыта с одной стороны светонепроницаемой крышкой (4). Печатная плата (5) с девятью SIPM, усилителями, датчиком температуры и разъемами подключается непосредственно к сцинтилляционной матрице.

Программа исследований

- Измерение анализирующих способностей в упругих $p\uparrow+p\uparrow, p\uparrow+n\uparrow, n\uparrow+n\uparrow$ реакциях
- Измерение эксклюзивных NN реакций, в т.ч. с рождением гиперонов; изучение свойств дикварков
- Измерение сечений рождения всех основных компонент странности (Λ, Σ⁻, Σ⁰, Σ⁺, К⁰, К⁺, К⁻) в АА взаимодействиях в диапазоне энергий Нуклотрона
- Изучение состава, кинематических и пространственно-временных характеристик системы частиц, сопровождающей рождение кумулятивной частицы с большим р_т
- Фемтоскопия с участием нейтронов и гиперонов, включая Σ, при больших р_т

Планирование

Коллектив, выразивший заинтересованность в участии в проект на дату доклада

П. Алекссеев³, Е. Антохин⁵, Т. Атовуллаев¹, А. Атовуллаева¹, С. Афанасьев¹, А. Балдин¹, В. Блеко¹, А. Бочкова¹, Н. Жигарева³, А. Канцырев³, В. Ким⁴, А. Мартемьянов³, М. Милой¹, М. Пацюк¹, Е. Piasetzky⁶, Т. Рыбаков², Д. Сакулин¹, А. Саламатин¹, А. Скобляков³, Г. Таер³, Е. Тарковский³, С. Черепанов¹, О. Hen⁷,...

- 1. ОИЯИ
- 2. НИЯУ МИФИ
- 3. ККТЭФ НИЦ КИ
- 4. ПИЯФ НИЦ КИ
- 5. ИЯФ СО РАН
- 6. Tel-Aviv University, Tel-Aviv, Israel
- 7. Massachusetts Institute for Technology, Cambridge, MA, USA

холл Лаборатории Теоретической Физики Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Семина 2023 ОИЯИ, г. Дубна

11

10

Mid

No

Ku

(

Дополнительные материалы

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Семинар ЛФВЭ апрель 2025

CC URQMD 10⁵ ev.	2 GeV/c	3GeV/c	4GeV/c	10GeV/c	30GeV/c
all	2 520 772	2 579 414	2 640 908	2 882 405	3 283 145
Р	271 961	266 605	266 161	248 805	228 866
Ν	271 720	266 368	266 624	248 612	228 820
π^0	43 878	64 268	85 051	162 099	282 712
π^+	37 929	55 837	74 365	145 040	255 919
π^{-}	37 969	55 702	74 208	144 887	254 974
\mathbf{K}^0	230	1 121	2 398	8 278	20 299
\mathbf{K}^+	235	1 110	2 304	8 365	20 332
Λ	225	951	1 922	5 878	11 331
Σ^0	86	468	927	2 451	3 857
Σ^+	66	372	788	1 972	3 278
Σ-	83	362	785	2 099	3 247
antiK ⁰	2	45	130	2 027	9 500
K-	3	33	130	2 102	9 623

3 Α ΓэΒ: K⁰+K⁺(2 231)~Λ+Σ(2 153)

Фактор 3 Сроки SPD

Набор физических данных SPD начнётся >2030 г.

 10^{10} /c6poc ~ 5 \cdot 10³³ /cm²/c p \uparrow , d \uparrow , ³He \uparrow + p \uparrow , d \uparrow , ³He \uparrow

Нуклотрон уже сейчас позволяет изучать спиновую физику и редкие процессы при √s ~ 5 Гэв/с

n↑+ n↑, странность в дикварках, 3-частичные SRC, флуктон-флуктонные корреляционные измерения, ∑- в холодной плотной барионной материи...