
Quantum Algorithms for the quantum
simulation of Closed and Open

Quantum Systems
Ian Joel David
24 June 2025

What is quantum simulation?

• Quantum simulation involves using a controllable quantum system to study the
behaviour of another quantum system that is difficult to study directly.

• Richard Feynman and Yuri Manin independently proposed the idea of using
quantum simulators to simulate quantum systems.

Richard P. Feynman Yuri I. Manin (Юрий Манин)

Yu . I . Manin , “Computable and Non-
Computable,” Sovetskoe Radio, Moscow, 1980,
128 p.

R.P. Feynman, Simulating physics with
computers, Internat. J. Theoret. Phys. 21 (6–7)
(1982) 467–488, http://dx.doi.org/10.1007/
bf02650179.

Why do we need quantum simulation?
• Unlike classical simulations, quantum simulations leverage the principles of

quantum mechanics to model complex quantum phenomena that are infeasible
for classical computers.

• Classical computers struggle with simulating quantum systems due to the
exponential growth of the Hilbert space.

• Quantum simulations can provide insights into many-body physics, quantum
chemistry, and material science.

Types of quantum simulation
Analogue vs digital

• Analog Quantum Simulation: Directly mimics the target quantum system
using a physically similar system that is controllable.

‣ This is done using analogue quantum computing which applies continuous
transformations to continuous quantum states.

‣Example: Using fermionic atoms hopping in an optical latice to simulate
quantum chemistry (Malz D, Cirac JI. PRX Quantum. 2023 Apr
1;4(2):020301.)

Types of quantum simulation
Analogue vs digital

• Digital Quantum Simulation: Uses a quantum computer to simulate the
quantum system by breaking down the simulation into a sequence of quantum
gates.

‣ This is called digital because it relies on digital quantum computing which
breaks down the computation into a discrete set of operations.

‣Example: Using a quantum computer and a method such as Trotter-Suzuki
product formulas to simulate Heisenberg spin chains.

What Types of quantum systems do we want to
simulate?

What Types of quantum systems do we want to
simulate?

• Closed Quantum Systems:

‣ Isolated from their environment.

‣ Evolve according to the Schrödinger
equation with unitary time evolution.

What Types of quantum systems do we want to
simulate?

• Open Quantum Systems:

‣ The system is allowed to interact with an
external environment so that it can exchange
energy, matter and information.

‣ Evolve according to the Lindblad master
equation, incorporating dissipation and
decoherence.

Applications of quantum simulation

• Fundamental Physics:

‣ Understanding high-temperature superconductivity.

‣ Studying quantum phase transitions.

Phase diagram for high temperature super conductors based on
iron

Applications of quantum simulation

• Quantum Chemistry:

‣ Simulating molecular structures and reactions.

‣ Designing new drugs and materials.

Applications of quantum simulation

• High Energy Physics:

‣ Simulating lattice gauge theories and particle interactions.

Basic Quantum computing
In quantum computing we make use of quantum systems called qubits and we
perform computations by applying a sequence of quantum gates (unitary
operations) to these qubits and then we perform measurements to obtain the
output the computation.

THe quantum Simulation problem
<latexit sha1_base64="9etLEAjq2qznGGcohdzMKBWM8Bw=">AAACHXicbVDLSsNAFJ3UV62vqEsXBovQbkoiRd0IRTcuK5i2YEKZTCft0MmDmRshhCz9Dj/ArX6CO3ErfoG/4bQNqK0H7uVwzr1c7vFiziSY5qdWWlpeWV0rr1c2Nre2d/TdvY6MEkGoTSIeiZ6HJeUspDYw4LQXC4oDj9OuN76a+N17KiSLwltIY+oGeBgynxEMSurrh86YQubEktWgnl/Yqv8oZj3v61WzYU5hLBKrIFVUoN3Xv5xBRJKAhkA4lvLOMmNwMyyAEU7zipNIGmMyxkN6p2iIAyrdbPpIbhwrZWD4kVAVgjFVf29kOJAyDTw1GWAYyXlvIv7rxaNUMiLnzoN/7mYsjBOgIZld9xNuQGRMojIGTFACPFUEE8HUAwYZYYEJqEArKhlrPodF0jlpWKeN5k2z2rosMiqjA3SEashCZ6iFrlEb2YigB/SEntGL9qi9am/a+2y0pBU7++gPtI9vbt2h/w==</latexit>

| (t)i = U(t) | (0)i
<latexit sha1_base64="lPZosyC88MrH127LJSJdij5tHv8=">AAACL3icbVDLSsNAFJ3UV62vqks3wSK0m5KIqBtBdOOygn1AU8pketsOnUzCzI1QYr/D7/AD3OoniBtxJ/6F0zQLbT1w4XDOuVzu8SPBNTrOu5VbWl5ZXcuvFzY2t7Z3irt7DR3GikGdhSJULZ9qEFxCHTkKaEUKaOALaPqj66nfvAeleSjvcBxBJ6ADyfucUTRSt+g+eMhFDxIv0nxSxoqnqBwIuMjkeqqNANNA2alMusWSU3VS2IvEzUiJZKh1i19eL2RxABKZoFq3XSfCTkIVciZgUvBiDRFlIzqAtqGSBqA7SfraxD4ySs/uh8qMRDtVf28kNNB6HPgmGVAc6nlvKv7rRcOx5kzPncf+eSfhMooRJJtd78fCxtCelmf3uAKGYmwIZYqbB2w2pIoyNBUXTDPufA+LpHFcdU+rJ7cnpcurrKM8OSCHpExcckYuyQ2pkTph5JE8kxfyaj1Zb9aH9TmL5qxsZ5/8gfX9AzYtqjg=</latexit>

| ̃(t)i = Ũ(t) | (0)i

<latexit sha1_base64="rmEglFg1zvFOmMgLWyha+MomKI8=">AAACxHiclVFda9swFJW9ry77SrfHvZiFlQTSYJey7mVQNhh77MbcFqIQZPkmEZElTboeBMf7efsP+wX7G5NdP7Tp9rALgsM5596Lzs2MFA7j+FcQ3rl77/6DvYe9R4+fPH3W339+7nRpOaRcS20vM+ZACgUpCpRwaSywIpNwka0/NPrFd7BOaPUVNwZmBVsqsRCcoafm/Z/5vDqqh3QNWFHjxBBH9XhLUcgcWqL2DLVMLSWMDt7R7Q3n4T+cdNtMHVPaO6ASvkV0m3rxsDOnrdNbtKmvD4xH9X80tjL4PqlVb94fxJO4reg2SDowIF2dzfu/aa55WYBCLplz0yQ2OKuYRcEl1D1aOjCMr9kSph4qVoCbVW3edfTaM3m00NY/hVHLXu+oWOHcpsi8s2C4crtaQ/5VM6uNE9ztrMfF21kllCkRFL/avihlhDpqLhrlwgJHufGAcSv8ByK+YpZx9Hdvkkl2c7gNzo8myZvJ8efjwen7LqM98pK8IkOSkBNySj6RM5ISHoyDL8E0oOHHUIYuLK+sYdD1vCA3KvzxB7u+3Qw=</latexit>

d2(| (t)i , | ̃(t)i) = k | (t)i � | ̃(t)ik2,
 kU(t)� Ũ(t)kopk | (0)i k2,
 kU(t)� Ũ(t)kop  ✏

Formal: The quantum simulation problem
(closed system)

Given a Hamiltonian H =
!

j Hj , a simulation time t ≥ 0, a pre-

cision ! > 0 and an initial state of the system |ψ(0)〉. Construct

an approximation Ũ(t) to the time evolution operator U(t) =
e−iHt such that,

#U(t)− Ũ(t)# ≤ !

and Ũ(t) can be efficiently implemented on a quantum computer

using a polynomial number of quantum gates.

Why is it hard to simulate quantum dynamics on a
classical computer?

We can always represent
<latexit sha1_base64="Wk4LOTUXwAplwDo0fg6Q8//d8X4=">AAACE3icbVDNSsNAGNz4W+tf1aOXxSLUS0mkqMeiF48VTFtoQ9lsNs3SzW7Y3Qgh9BW8ib6LN/HqA/gqnty0OdjWgYVh5vv4ZsdPGFXatr+ttfWNza3tyk51d2//4LB2dNxVIpWYuFgwIfs+UoRRTlxNNSP9RBIU+4z0/Mld4feeiFRU8EedJcSL0ZjTkGKkC8lt6ItRrW437RngKnFKUgclOqPazzAQOI0J15ghpQaOnWgvR1JTzMi0OkwVSRCeoDEZGMpRTJSXz7JO4blRAhgKaR7XcKb+3chRrFQW+2YyRjpSy14h/uslUaYoVgvnc98XLFhKpMMbL6c8STXheB4oTBnUAhYFwYBKgjXLDEFYUvMniCMkEdamxqopy1muZpV0L5vOVbP10Kq3b8vaKuAUnIEGcMA1aIN70AEuwCACz+AVvFkv1rv1YX3OR9escucELMD6+gVyf56p</latexit>

U(t) as a
<latexit sha1_base64="XwyUL5Br7aj+rlid1mWw3Bn/qTY=">AAACGHicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsK9iHtUDKZtA1NJkNyRxiGfoU70X9xJ27d+SuuTNtZ2NYDgcM593JPThALbsB1v53C2vrG5lZxu7Szu7d/UD48ahmVaMqaVAmlOwExTPCINYGDYJ1YMyIDwdrB+Hbqt5+YNlxFD5DGzJdkGPEBpwSs9Bj2gEtmcNgvV9yqOwNeJV5OKihHo1/+6YWKJpJFQAUxpuu5MfgZ0cCpYJNSLzEsJnRMhqxraUTsGT+bBZ7gM6uEeKC0fRHgmfp3IyPSmFQGdlISGJllbyr+68Wj1HBqFs5nQaBEuJQIBtd+xqM4ARbReaBBIjAoPG0Jh1wzCiK1hFDN7Z8wHRFNKNguS7Ysb7maVdK6qHqX1dp9rVK/yWsrohN0is6Rh65QHd2hBmoiiiR6Rq/ozXlx3p0P53M+WnDynWO0AOfrFw/XoSc=</latexit>

d⇥ d matrix.

Consider a system of <latexit sha1_base64="FPGSvv/PZXs3IHSjUhV08iZLYAk=">AAACEHicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsW7APaoWQyt21oJhmSjDAM/QJ3ov/iTtz6B/6KK9N2Frb1QOBwzr3ckxPEnGnjut9OYWNza3unuFva2z84PCofn7S1TBSFFpVcqm5ANHAmoGWY4dCNFZAo4NAJJvczv/MESjMpHk0agx+RkWBDRomxUlMMyhW36s6B14mXkwrK0RiUf/qhpEkEwlBOtO55bmz8jCjDKIdpqZ9oiAmdkBH0LBUkAu1n86BTfGGVEA+lsk8YPFf/bmQk0jqNAjsZETPWq95M/NeLx6lmVC+dz4JA8nAlkRne+hkTcWJA0EWgYcKxkXjWDg6ZAmp4agmhitk/YTomilBjOyzZsrzVatZJ+6rqXVdrzVqlfpfXVkRn6BxdIg/doDp6QA3UQhQBekav6M15cd6dD+dzMVpw8p1TtATn6xfh5J3f</latexit>n spins. The Hamiltonian describing a single spin is a
<latexit sha1_base64="oYAjiIYPChpU/wTvWn1Y6Bmme8I=">AAACGHicbVDLSgMxFL3js9ZX1aWbYBFclZlS1GXRjcsK9iHtUDKZtA1NMkOSEYahX+FO9F/ciVt3/oor03YWtvVA4HDOvdyTE8ScaeO6387a+sbm1nZhp7i7t39wWDo6bukoUYQ2ScQj1QmwppxJ2jTMcNqJFcUi4LQdjG+nfvuJKs0i+WDSmPoCDyUbMIKNlR6rPcME1ajaL5XdijsDWiVeTsqQo9Ev/fTCiCSCSkM41rrrubHxM6wMI5xOir1E0xiTMR7SrqUS2zN+Ngs8QedWCdEgUvZJg2bq340MC61TEdhJgc1IL3tT8V8vHqWaEb1wPguCiIdLiczg2s+YjBNDJZkHGiQcmQhNW0IhU5QYnlqCiWL2T4iMsMLE2C6LtixvuZpV0qpWvMtK7b5Wrt/ktRXgFM7gAjy4gjrcQQOaQEDAM7zCm/PivDsfzud8dM3Jd05gAc7XL2cIoMM=</latexit>

2⇥ 2 matrix.

So the Hamiltonian of <latexit sha1_base64="FPGSvv/PZXs3IHSjUhV08iZLYAk=">AAACEHicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsW7APaoWQyt21oJhmSjDAM/QJ3ov/iTtz6B/6KK9N2Frb1QOBwzr3ckxPEnGnjut9OYWNza3unuFva2z84PCofn7S1TBSFFpVcqm5ANHAmoGWY4dCNFZAo4NAJJvczv/MESjMpHk0agx+RkWBDRomxUlMMyhW36s6B14mXkwrK0RiUf/qhpEkEwlBOtO55bmz8jCjDKIdpqZ9oiAmdkBH0LBUkAu1n86BTfGGVEA+lsk8YPFf/bmQk0jqNAjsZETPWq95M/NeLx6lmVC+dz4JA8nAlkRne+hkTcWJA0EWgYcKxkXjWDg6ZAmp4agmhitk/YTomilBjOyzZsrzVatZJ+6rqXVdrzVqlfpfXVkRn6BxdIg/doDp6QA3UQhQBekav6M15cd6dD+dzMVpw8p1TtATn6xfh5J3f</latexit>n spins is a
<latexit sha1_base64="sSOlU5BXqAtO53yKML8RQLsMGSE=">AAACI3icbVC7TsMwFHV4lvIKZWSxqJCYqqSqgLGChbFI9CG1oXIcp7Xq2JHtIKKov8KG4F/YEAsDP8KEm2agLUeydO659+oeHz9mVGnH+bLW1jc2t7ZLO+Xdvf2DQ/uo0lEikZi0sWBC9nykCKOctDXVjPRiSVDkM9L1JzezfveRSEUFv9dpTLwIjTgNKUbaSEO7Un/I+BQONI2IgnkxtKtOzckBV4lbkCoo0BraP4NA4CQiXGOGlOq7Tqy9DElNMSPT8iBRJEZ4gkakbyhH5pSX5d6n8MwoAQyFNI9rmKt/NzIUKZVGvpmMkB6r5d5M/LcXj1NFsVo4n/m+YMGSIx1eeRnlcaIJx3NDYcKgFnAWGAyoJFiz1BCEJTV/gniMJMLaxFo2YbnL0aySTr3mXtQad41q87qIrQROwCk4By64BE1wC1qgDTB4As/gFbxZL9a79WF9zkfXrGLnGCzA+v4FegCk9g==</latexit>

2n ⇥ 2n matrix.

This means that the unitary operator describing the evolution will also be a
<latexit sha1_base64="sSOlU5BXqAtO53yKML8RQLsMGSE=">AAACI3icbVC7TsMwFHV4lvIKZWSxqJCYqqSqgLGChbFI9CG1oXIcp7Xq2JHtIKKov8KG4F/YEAsDP8KEm2agLUeydO659+oeHz9mVGnH+bLW1jc2t7ZLO+Xdvf2DQ/uo0lEikZi0sWBC9nykCKOctDXVjPRiSVDkM9L1JzezfveRSEUFv9dpTLwIjTgNKUbaSEO7Un/I+BQONI2IgnkxtKtOzckBV4lbkCoo0BraP4NA4CQiXGOGlOq7Tqy9DElNMSPT8iBRJEZ4gkakbyhH5pSX5d6n8MwoAQyFNI9rmKt/NzIUKZVGvpmMkB6r5d5M/LcXj1NFsVo4n/m+YMGSIx1eeRnlcaIJx3NDYcKgFnAWGAyoJFiz1BCEJTV/gniMJMLaxFo2YbnL0aySTr3mXtQad41q87qIrQROwCk4By64BE1wC1qgDTB4As/gFbxZL9a79WF9zkfXrGLnGCzA+v4FegCk9g==</latexit>

2n ⇥ 2n matrix.

So the size of the matrix that a classical computer needs to store will
grow exponentially with the number of spins.

Usually we want to construct Ũ(t) as a finite product of other
simpler unitary operators Vj(t), which can be easily implemented
on a quantum computer i.e.

Ũ(t) =
"

j

Vj(t)

We want to find Ũ(t) such that estimating bounds for the preci-
sion and analysis of the complexity are possible without specific
knowledge of H.

Let us try to do this for a simple Hamiltonian we want to simulate,

H = H1 +H2

This means we need to construct an approximation to,

U(t) = e−i(H1+H2)t

as a product of other unitaries. The natural thing to do is to try

to write Ũ(t) in terms of e−iH1t and e−iH2t, to do this we recall

the Trotter Formula

e−i(H1+H2)t = lim
n→∞

(e−iH1t/ne−iH2t/n)n.

First order Trotter-Suzuki product formulas

The Trotter formula is an exact formula if we want to approximate

U(t) then we know that for large enough n we have,

e−i(H1+H2)t ≈ (e−iH1t/ne−iH2t/n)n.

However to use this approximation we need a rigorous bound for

the error as well as a bound on n as saying large enough isn’t

precise enough.

Let us start by defining τ := t/n then we can write,

U(t) = (e−iHt/n)n = (e−iHτ)n = U(τ)n

and,

Ũ(τ) = e−iH1τe−iH2τ

Then we need to show that,

#U(t)− U(τ)n# ≤ !

and we need to find lower bounds on the precision ! > 0 and on
n ∈ N.

This allows us to arrive at the bound,

$$$U(τ)− Ũ(τ)
$$$ ≤ 2

|− iτ |2(2Λ)2

2!
e2|−iτ |Λ = (2τΛ)2e2τΛ

Since τ = t/n we have,

$$$U(t)− Ũ(τ)n
$$$ ≤ n

(2tΛ)2

n2
e2tΛ/n =

(2tΛ)2

n
e2tΛ/n

If we choose ! ≥ (2tΛ)2

n e2tΛ/n then
$$$U(t)− Ũ(τ)n

$$$ ≤ !.

In a quantum simulation problem we usually want to specify a
precision ! and then find the number of times n we need to apply
Ũ(τ).

To find n one either directly solves numerically ! = (2tΛ)2

n e2tΛ/n,
or if we choose some n such that e2tΛ/n ≈ 1 then we can easily
have,

n =

%
(2tΛ)2

!

&
.

So far we have looked at an approximation up to only first order
but what about higher order approximations. This problem was
addressed by Suzuki [].

To keep track of the order to which we approximate U we will
write down our product approximations as Sk where k will denote
the order to of the approximation, for example

Ũ(τ) = S1(τ) =

M"

j=1

e−iHjτ .

Higher order Trotter-Suzuki product formulas

Suzuki M. Fractal decomposition of exponential operators with applications to many-body theories and
Monte Carlo simulations. Physics Letters A. 1990 Jun 4;146(6):319-23.

As a starting point consider the second order approximation,

which for a Hamiltonian H =
!M

j=1Hj and a small time step

τ ≥ 0 is,

S2(τ) =

M"

j=1

e−iHjτ/2
1"

j′=M

e−iHj′τ/2

The error bound for this formula is, #U(t)− S2(τ)
n# ≤ (2LτΛ)3

3n2 e2LτΛ/n,

which shows that it is a second order formula and a value for n
is found in a similar manner to the first order formula.

We also note that this approximation is symmetric meaning that

under time reversal the structure is preserved.

Suzuki started with the second order product formula S2 and

recursively constructed higher order product formulas.

He did this by taking products of the second order product for-

mulas in such a way that when you Taylor expand it you are able

to cancel higher order terms in the expansion of U(t).

As an example, Suzuki found that if you consider the Taylor ex-
pansion of the product,

S2k−2(p2τ)
2S2k−2([1− 4p2]τ)S2k−2(pkτ)

2

where pk = 1/(4 − 4(1/2k−1)), then this product formula can ap-
proximate U(τ) to an order 2k where k ∈ N. We will usually write
this as S2k(τ) i.e.

S2k(τ) = S2k−2(p2τ)
2S2k−2([1− 4p2]τ)S2k−2(pkτ)

2.

Any formula of this form is referred to as a Trotter-Suzuki product
formula.

The analysis for the error bounds with this product formula are
quite complicated so we just state the bounds,

#U(t)− S2k(τ)
n# ≤ (2L5k−1Λt)2k+1

3n2k
exp

'
2L5k−1Λt

n

(
≤ !

and we find n to be,

n =

)
max

*
2L5k−1Λt,

2k

+
e(2L5k−1Λt)2k+1

3!

,-
.

An important quantity that will aid us later in computing the num-
ber of gates in our circuit is the number of exponentials in the
product formula Nexp which for this formula is,

Nexp ≤ 2L5k−1n.

Step 1: Given the Hamiltonian H for our system write it in the

form H =
!

j Hj such that each Hj can be exponentiated easily

and has an efficient quantum circuit implementation.

Step 2: Pick an order k for the Trotter-Suzuki product formula

S2k you wish to use to approximate U(t).

Step 3: Compute Λ = maxj #Hj#, specify a simulation time

t ≥ 0, a precision ! > 0 and some initial state |ψ(0)〉. Use this to

compute n.

Step 4: Construct quantum circuits for each e−iHjτ .

Step 5: Construct a gate set using S2k(t/n)
n that will be imple-

mented on a quantum computer using |ψ(0)〉 as an initial state.

Trotter-Suzuki Quantum simulation Algorithm

The state of an open quantum system is described by a density matrix
whose evolution is described by a quantum channel i.e.

ρ(t)
Tt = etℒ

ρ(t) = Ttρ(0)

where is the Markovian GKSL generator ℒ

ℒρ = − i[H, ρ] + ∑
k

γk(LkρL†
k −

1
2

{L†
k Lk, ρ})

For convenience we usually write the generator as,

ℒ =
M

∑
k=1

ℒk

Given a quantum channel where

is the generator. We want to construct an approximation to the channel
within some precision , and be able to implement that approximation using a
quantum circuit that uses fewer gates than standard Trotter-Suzuki product
formulas.

Tt = exp(tℒ)

ℒ(ρ) = − i[H, ρ] + ∑
k

γk (LkρL†
k −

1
2 {L†

k Lk, ρ})
Tt

ϵ

Problem and setting

To simplify our calculations we can re-write the generator as,

	 	 	 	 	 	 	

where and

Sometimes it will also be convenient to absorb the decay rates into the
generators so we have,	

	 	 	 	

ℒ(ρ) =
M

∑
k=1

γkℒk(ρ)

ℒ1(ρ) = − i[H, ρ], ℒk(ρ) = LkρL†
k −

1
2 {L†

k Lk, ρ} γ1 = 1.

γk
ℒk

ℒ(ρ) =
M

∑
k=1

ℒ̂k(ρ) .

Problem and setting

Diamond norm

Important bound for Diamond norm

Bound on the generator

Deterministic Trotter-Suzuki product formulas

Use Stinespring dilation theorem to
obtain the circuits for the channel

Gate complexities for Deterministic Trotter-
Suzuki product formulas

How can we improve the gate complexities
dependence on the number of terms in the

generator?

Answer: Use randomisation
Based on: David I J, Sinayskiy I and Petruccione F. Faster Quantum
Simulation of Markovian Open Quantum Systems via Randomisation.
arXiv:2408.11683 (2024) (currently in review at Quantum Journal)

The key idea is to randomly apply exponentials in the TS product formulas
of first and second order to achieve an improvement in the gate
complexities dependence on the number of terms in the generator.

We also construct an approximation inspired by the stochastic drift algorithm (qDRIFT) in [2]. We have
the following theorem for the qDRIFT algorithm for open quantum systems.

Theorem 3 (qDRIFT): Given a quantum channel with a generator and

for , there exists some such that,

 ,

w i t h , , a n d , , w i t h ,

 such that and .

Tt = exp(tℒ) ℒ =
M

∑
k=1

γkℒk

ϵ ≥ 0 N ∈ ℕ

| |Tt − ℰ∘N
τ | |⋄ ≤ ϵ

ϵ ≥
t2α2Λ2

N
N ≥

t2α2Λ2

ϵ
ℰτ =

M

∑
k=1

pk exp(τℒk) pk = γk /α

α =
M

∑
k=1

γk

m

∑
k=1

pk = 1 τ = tα/N

[2] Campbell E. Random compiler for fast Hamiltonian simulation. Physical review letters. 2019 Aug 14;123(7):070503.

QDrift algorithm for oqs

How can we further improve the qdrift method
for both closed and open quantum systems?

SOLUTION:David I. J. , Sinayskiy I. and Petruccione F. , Tighter Error
Bounds for the qDRIFT algorithm, arXiv:2506.17199 (2025)

Main results

• Use Integral form of Taylor Expansion

• Use Jensens Inequality

To obtain the tighter bound we:

In closed system case we see
we obtain linear dependence on
the sum of the decay rates in the
generator.

Thank you!

