
24 June 2025

An Introduction to Quantum Computing and Quantum 
Machine Learning with Quantum Parametric Circuits

Ilya Sinayskiy



Outline

• History of Quantum Computing 

• Universal error correcting fault -tolerant quantum computers vs NISQ devices 

• Basic of Quantum Computations 

• QPC examples VQE/VQLS/QAOA/QCNN 

• Application of architectural search to Ansatz design



Quantum Computers
Quantum Mechanics: 

early 1900
Computer Science: 

1930

Richard P. Feynman Yuri I. Manin (Юрий Манин)

Yu. I. Manin, “Computable and Non-
Computable,” Sovetskoe Radio, Moscow, 
1980, 128 p.
R.P. Feynman, Simulating physics with 
computers, Internat. J. Theoret. Phys. 21 (6–
7) (1982) 467–488, http://dx.doi.org/
10.1007/bf02650179.  



Quantum Computers

https://quantumpedia.uk/a-brief-history-of-quantum-computing-e0bbd05893d0



Quantum Computers

Shor, P.W. (1994). "Algorithms for quantum computation: Discrete logarithms and factoring". 
Proceedings 35th Annual Symposium on Foundations of Computer Science. pp. 124–134. doi:10.1109/
sfcs.1994.365700. 

Shor, Peter W. (October 1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete 
Logarithms on a Quantum Computer". SIAM Journal on Computing. 26 (5): 1484–1509. 
arXiv:quant-ph/9508027. doi:10.1137/S0097539795293172. 2337707.

Shor’s Algorithm

Shor, Peter W. (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493 – R2496

Shor’s Code - QEC

Fault-tolerant quantum computation
Shor, Peter W. (1997).  “Fault-tolerant quantum computation” quant-ph/9605011;  
37th Symposium on Foundations of Computing, IEEE Computer Society Press, 1996, pp. 56-65 

https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/quant-ph/9508027
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1137%2FS0097539795293172
https://api.semanticscholar.org/CorpusID:2337707


Quantum Computers

Shor, P.W. (1994). "Algorithms for quantum computation: Discrete logarithms and factoring". 
Proceedings 35th Annual Symposium on Foundations of Computer Science. pp. 124–134. doi:10.1109/
sfcs.1994.365700. 

Shor, Peter W. (October 1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete 
Logarithms on a Quantum Computer". SIAM Journal on Computing. 26 (5): 1484–1509. 
arXiv:quant-ph/9508027. doi:10.1137/S0097539795293172. 2337707.

Shor’s Algorithm

Shor, Peter W. (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493 – R2496

Shor’s Code - QEC

Fault-tolerant quantum computation
Shor, Peter W. (1997).  “Fault-tolerant quantum computation” quant-ph/9605011;  
37th Symposium on Foundations of Computing, IEEE Computer Society Press, 1996, pp. 56-65 

NEED MILLIONS PHYSICAL QUBITS TO FACTORISE 2048bit IN
TEGER

https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/quant-ph/9508027
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1137%2FS0097539795293172
https://api.semanticscholar.org/CorpusID:2337707


Quantum Computers - Current Status (NISQ)

Google - Willow Chip (2024)

105 qubit + some QEC

IBM - Condor Chip (2025)

1121 qubit
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Math of Quantum Computing on a single page
• Qubit is superposition of 0 and 1: α0 |0→+ α1 |1→ ∈ C2

• n-qubit system: superposition of all n-bit strings:

∑

x∈{0,1}n

αx |x→ ∈ C
2n

• Measurement: see outcome x ∈ {0, 1}n with probability |αx|2

• Unitary transformation: matrix that preserves the length of the vector
of amplitudes. Gates: unitaries on 1 qubit

X =

(

0 1
1 0

)

, Z =

(

1 0
0 −1

)

, T =

(

1 0

0 eiπ/4

)

, H =
1√
2

(

1 1
1 −1

)

• or on 2 qubits, CNOT: |a, b→ %→ |a, a⊕ b→ CNOT =









1 0 0 0
0 1 0 0
0 0 0 1

0 0 1 0









• Combine simultaneous gates via tensor product, combine sequential

gates via matrix product
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Circuit Model of Quantum Computations

Circuit for Quantum Computer



Quantum Computing with NISQ devices

Quantum Machine Learning in a nutshell 
 
 
 

 

Lectures by Oleksandr Kyriienko 

 

Course description: In this express-course I will provide the state-of-the-art knowledge in 
the field of machine learning (ML) interfaced with a quantum information paradigm. Various 
facets of the subjects will be touched, including quantum inspired machine learning 
algorithms, modern applications of ML in condensed matter and chemistry, as well as full 
fledged quantum machine learning developments. 

The course is divided into 8 lectures (~2 academic hours each) and 2 seminars, and is 
intended to be run over 2 weeks period. The lectures will be supplemented with a homework, 
structured in the form of coding tasks or contemporary literature analysis. After the course, 
the examination will be performed in the passed/not-passed form. 

 

Course structure: 
Lecture 1: Introduction to Quantum Machine Learning 
Classification of quantum ML tasks and applications. Introduction to classical machine 
learning and its quantum applications. Machine learning with quantum hardware and 
classical algorithms. ML-inspired quantum computing. Quantum algorithms overview for 
future quantum computers. 
 
Lecture 2: Quantum Matter Classification with Machine Learning (part 1) 
Phase transition detection from Quantum Monte Carlo. Application of supervised and 
unsupervised methods for the detection. Refined phase boundaries with recurrent neural 
nets and deep learning. 
 
Lecture 3: Quantum Matter Classification with Machine Learning (part 2) 
Detection of topological states with machine learning techniques. Real space topological 
feature extraction in disordered media. Unsupervised topological number detection. 
Entanglement characterization with ML. 
 
Lecture 4: Machine learning-inspired quantum protocols 
Restricted Boltzmann machines (RBM) and new ansatzes for ground state search problems. 
Detection of phase transitions with RBMs. Relation to tensor network methods. 

Quantum Parametric Circuit
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QPC for Ground State of a Two Level System



General case: QPC for Ground State Estimation



Solving Systems of Linear Equations with QPC

Classical algorithms scales as 

HHL scales as poly(log(N), k)

HHL works in fault-tolerant settings only!



Solving Systems of Linear Equations with QPC

Pellow-Jarman, A., Sinayskiy, I., Pillay, A. et al. Near term algorithms for linear systems of equations. Quantum Inf Process 22, 258 (2023). https://doi.org/10.1007/s11128-023-04020-2
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a method for the implementation of the Adiabatic Ansatz on the VQLS (AAVQLS).
These approaches are implemented and contrasted. The CQSmethod is run with mod-
erate success on a real quantum device. The EAVQLS and AAVQLS show promise
as possible improvements to the standard VQLS algorithm once refined.

Keywords Variational · Linear equations · Near-term quantum · Quantum-classical ·
VQLS

1 Introduction

Systems of linear equations play an important role in many areas of science and
engineering, making the potential quantum speed-up for solving them of great interest.
Solving a system of N linear equations with N unknowns, expressible as Ax = b,
involves finding the unknown solution vector x. This is known as the Linear Systems
Problem (LSP).

The Harrow–Hassidim–Lloyd (HHL) algorithm [1] is a quantum algorithm for
the quantum linear systems problem (QLSP) [2], a quantum analogue of the LSP.
The QLSP is stated as follows: Let A be an N × N Hermitian matrix (however, this
algorithm is not limited to a Hermitian matrix) and let x and b be N dimensional
vectors, satisfying Ax = b, having corresponding quantum states |x⟩ and |b⟩, such
that

|x⟩ : =
∑

i xi |i⟩
||∑i xi |i⟩||2

, (1)

|b⟩ : =
∑

i bi |i⟩
||∑i bi |i⟩||2

. (2)

If A is not Hermitian, define Ã =
( 0 A
A† 0

)
, which is Hermitian, and instead solve the

equation Ãy =
(
b
0

)
and solve for y =

(
0
x
)
. Given access to matrix A by means of an

oracle, and a unitary gate U such that U|0⟩ = |b⟩, output a quantum state |x ′⟩ such
that |||x⟩ − |x ′⟩||2 ≤ ϵ, where ϵ is the error-bound of the approximate solution.

The HHL algorithm is a quantum algorithm expected to give a substantial speed-
up over classical approaches, providing up to an exponential speed-up over known
classical algorithms in cases where the linear system is sparse, the condition number
is low, and the actual solution vector is not required to be read out, but instead some
scalar measure on the solution vector is of interest. As with many promising quan-
tum algorithms, the HHL algorithm requires a fault-tolerant quantum computer to be
successfully implemented, predicted to only be available in the long-term future.

Approaches at finding algorithms for noisy intermediate-scale quantum (NISQ)
devices [3], available in the near-term future, have focused mainly on a class of algo-
rithms known as Variational Hybrid Quantum Classical Algorithms (VHQCAs). The
idea behind VHQCAs is to utilize a quantum-classical feedback loop. Here, a quantum
device is used to compute a cost function for a parameterized quantum circuit (ansatz),
muchmore efficiently than is possible on a classical device [6], while a classical device
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This paper begins with a description of the above near-term approaches for the
Quantum Linear Systems Problem. Some experiments designed for an evaluation of
these approaches are outlined in the section following that.We then present and discuss
the results of the experiments.

2 Near-term algorithms

The inputs to the all the near-term algorithms below are thematrixA, and vector b.A is
given in a slightly different form here than in the QLSP. Here, A is given by m unitary
matrices Ai , implemented as unitary gates, such that A = ∑m

i=1 ci Ai , ci ∈ C (any
Hermitian matrix in a finite-dimensional space can be written as a linear combination
of unitary matrices). Also given is a unitary gate U, such that U|0⟩ = |b⟩. VQLS cost
functions often require either or both Ai and U to be given as controlled gates, which
is assumed possible.

2.1 Variational quantum linear solver

The standard VHQCA approach for the quantum linear systems problem is the Varia-
tional Quantum Linear Solver, itself being a basic application of the VQE. The VQLS
simply involves the selection of a suitable ansatz, cost function, and classical opti-
mizer. The algorithm runs in a simple feedback-loop, whereby the classical optimizer
finds the optimal parameters for the ansatz circuit, by iteratively evaluating the cost
function on the quantum device, and updating the parameters until a minimum cost
value is achieved. The quantum device is used to evaluate the cost function, because it
is much more efficient than any known method on a classical device for this step [6].

Let the ansatz be denoted by V (α), and let the optimal ansatz parameters be denoted
by α∗. Then, once the VQLS algorithm terminates, V (α∗)|0⟩ = |x ′⟩, where |||x⟩ −
|x ′⟩||2 ≤ ϵ, where ϵ is the error-bound of the approximate solution, and |x⟩ is the
exact solution as described by Eq. (3) (Fig. 1).

2.1.1 VQLS ansatz

Broadly speaking, there are two types of ansätze; hardware-efficient (agnostic) ansätze
and problem-specific ansätze.

Hardware-efficient ansätze are designed without taking into account the specific
problem being solved, that is matrix A and |b⟩, but rather only the topology (backend
connectivity of the qubits) and available gates of a specific quantum computer. A
hardware-efficient ansatz can be denoted by a sequence of n parameterized quantum
gates as,

VAgnostic(α) = γ1(α1)γ2(α2) · · · γn(αn), (4)

where γi denotes a specific parameterized gate in the quantum circuit, and αi denotes
that parameters value.
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2.1.2 VQLS cost functions

The cost function Hamiltonian is where the application of the VQE algorithm to
solving systems of linear equations is implemented. Various different cost functions
have been proposed for the VQLS [6, 7]. For simplicity, denote the state V (α)|0⟩,
as |x⟩, and let |ψ⟩ = A|x⟩. Ref. [6] proposes a cost function based on the overlap
between the projector |ψ⟩⟨ψ | and the subspace orthogonal to |b⟩. This cost function
also normalizes the expectation value of the Hamiltonian to improve performance.
The cost function is given by,

CG = ⟨x |HG |x⟩
⟨ψ |ψ⟩ , (6)

where the Hamiltonian HG is given by,

HG = A† (1 − |b⟩⟨b|) A. (7)

This cost function can have gradients that vanish exponentially with the number of
qubits. To improve on this shortfall, the cost function CL is proposed by replacing HG
with a local version of the Hamiltonian, HL , improving the trainability of the ansatz,
given by,

HL = A†U

⎛

⎝1 − 1
n

n∑

j=1

|0 j ⟩⟨0 j | ⊗ 1 j̄

⎞

⎠U †A, (8)

where 1 j̄ denotes identity on all qubits except qubit j . The cost function CL can
be computed using the Hadamard Test as shown in Fig. 2. CL has been shown to be
equivalent cost function to CG , however, having improved performance [6], and is
explicitly given by,

CL = ⟨x |HL |x⟩
⟨ψ |ψ⟩ . (9)

2.1.3 Classical optimizers

The VQLS admits the use of either gradient-free or gradient-based optimizers. For
gradient-based optimizers, gradient values can be found analytically [6, 12], or esti-
mated through finite differences. The classical optimizer chosen has a large impact on
howwell the optimization process dealswith the noise inherent inNISQdevices. Some
classical optimizers handle noise better than others [13], making classical optimizer
selection important.

2.2 Adiabatic-assistedVQLS

The Adiabatic-Assisted Variational Quantum Linear Solver (AAVQLS) [7] simply
augments the standard VQLS approach, by proposing a variation in the Hamiltonian
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Fig. 2 Hadamard Test Circuits for cost function CL Eq. (9). The top circuit is employed when calculating
the value of the numerator ⟨x |HL |x⟩, while the bottom circuit is employed when calculating the value of the
denominator, ⟨ψ |ψ . The S† gate is included when calculating imaginary-valued parts of the cost function
and excluded when calculating the real-valued parts, and therefore, drawn in as a dotted line. V (α) denotes
the ansatz, Al the l-th unitary from the linear sum A = ∑

i ci Ai and U the unitary such that U |0⟩ = |b⟩.
Z j denotes a standard Z gate on the j-th qubit, and H being a standard Hadamard gate

over time, inspired by adiabatic quantum computing methods [14], in an attempt to
allow the ansatz state to always be close to the ground state of the Hamiltonian. Let
H0 be a Hamiltonian with a known ground state, and let H1 be the Hamiltonian whose
ground state corresponds to the solution of the linear system in question. Let theHamil-
tonian of the AAVQLS be given by (1− s)H0 + sH1, where s is a discrete parameter,
varying from s = 0, to s = 1, in T discrete intervals, during the optimization process.

This approach is the same as theVQLSwith respect to the cost function and classical
optimizer; however, the ansatz must be chosen such that it can be easily initialized in
the ground state of H0 at the start of the algorithm. The only added procedure to the
AAVQLS from the VQLS occurs during the training phase, where the parameter s is
varied in T discrete intervals from s = 0 to s = 1, thereby varying the Hamiltonian
from H0 to H1.

Proposed here is oneway inwhich theAAVQLS can be implemented as an adaption
of the VQLS. Firstly, the linear system is reformulated as,

[(1 − s̄)1+ s̄A]x = b, (10)

where s̄ can be varied from 0 to 1, with x = b, when s̄ = 0, and [(1− s̄)1+ s̄A]x = b,
equivalent to Ax = b, when s̄ = 1.

Then, for a suitable ansatz V (α) = γ1(α1)γ2(α2) · · · γn(αn)where α can be initial-
ized such that V (α) = 1, append to it the unitary U (for creating state |b⟩) to create
ansatz VAAV QLS(α) as below,
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Fig. 1 VQLS Schematic: The algorithm runs in a simple feedback loop, whereby a classical optimizer finds
the optimal parameters for the ansatz circuit, by iteratively evaluating the cost function on the quantum
device and updating the parameters, until a minimum cost value is achieved. The matrix A is given as a
linear sum of unitaries Ai with complex coefficients ci , and the vector b is given as a unitary U such that
U |0⟩ = |b⟩. V (α) denotes the parameterized ansatz, α∗ denotes the optimal parameters. At termination,
V (α∗)|0⟩ = |x ′⟩, where |||x⟩ − |x ′⟩||2 ≤ ϵ, with |x⟩ being the exact solution to the QLSP, and ϵ being the
error-bound of the approximate solution

These ansätze can be constructed to be more resistant to noise on any specific avail-
able quantum device, but they may fall short finding a solution |x ′⟩, as any particular
hardware-efficient ansätze is not guaranteed to span the region of theHilbert space con-
taining any good approximation of the solution |x ′⟩. Therefore, a hardware-efficient
ansatz effectively trades potential relevance to the specific problem, for increased noise
resistance.

Problem-specific ansätze on the other hand do not take into account the specific
quantum device being used, and rather try to exploit the knowledge of the problem
available. The Quantum Alternating Operator Ansatz (QAOA) [6] is one such pro-
posed problem-specific ansatz, using two Hamiltonians, known as the driver and the
mixer, denoted by HD and HM , respectively, constructed from specific knowledge
of the problem, namely A and b. This problem-specific ansatz can be denoted by a
repeating sequence of driver and mixer Hamiltonian simulations, each being applied
for a variable amount of time. These time parameters α are the trainable aspect of this
problem specific ansatz, which are optimized by some classical device. The QAOA
can be denoted as,

VQAOA(α) = e−i HMα2p e−i HDα2p−1 . . . e−i HMα2e−i HDα1 . (5)

The requirement of Hamiltonian simulation from the QAOA makes these ansätze
far less near-term; therefore, these ansätze are not considered further in this paper.
More information on the specific construction of the QAOA, including operators HD
and HM , is given in [6].
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2.1.2 VQLS cost functions

The cost function Hamiltonian is where the application of the VQE algorithm to
solving systems of linear equations is implemented. Various different cost functions
have been proposed for the VQLS [6, 7]. For simplicity, denote the state V (α)|0⟩,
as |x⟩, and let |ψ⟩ = A|x⟩. Ref. [6] proposes a cost function based on the overlap
between the projector |ψ⟩⟨ψ | and the subspace orthogonal to |b⟩. This cost function
also normalizes the expectation value of the Hamiltonian to improve performance.
The cost function is given by,

CG = ⟨x |HG |x⟩
⟨ψ |ψ⟩ , (6)

where the Hamiltonian HG is given by,

HG = A† (1 − |b⟩⟨b|) A. (7)

This cost function can have gradients that vanish exponentially with the number of
qubits. To improve on this shortfall, the cost function CL is proposed by replacing HG
with a local version of the Hamiltonian, HL , improving the trainability of the ansatz,
given by,

HL = A†U

⎛

⎝1 − 1
n

n∑

j=1

|0 j ⟩⟨0 j | ⊗ 1 j̄

⎞

⎠U †A, (8)

where 1 j̄ denotes identity on all qubits except qubit j . The cost function CL can
be computed using the Hadamard Test as shown in Fig. 2. CL has been shown to be
equivalent cost function to CG , however, having improved performance [6], and is
explicitly given by,

CL = ⟨x |HL |x⟩
⟨ψ |ψ⟩ . (9)

2.1.3 Classical optimizers

The VQLS admits the use of either gradient-free or gradient-based optimizers. For
gradient-based optimizers, gradient values can be found analytically [6, 12], or esti-
mated through finite differences. The classical optimizer chosen has a large impact on
howwell the optimization process dealswith the noise inherent inNISQdevices. Some
classical optimizers handle noise better than others [13], making classical optimizer
selection important.

2.2 Adiabatic-assistedVQLS

The Adiabatic-Assisted Variational Quantum Linear Solver (AAVQLS) [7] simply
augments the standard VQLS approach, by proposing a variation in the Hamiltonian
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1. INTRODUCTION
1.1. QUANTUM ADIABATIC OPTIMIZATION
Recently, there has been much interest in the possibility of using
adiabatic quantum optimization (AQO) to solve NP-complete
and NP-hard problems [1, 2] 1. This is due to the following
trick: suppose we have a quantum Hamiltonian HP whose ground
state encodes the solution to a problem of interest, and another
Hamiltonian H0, whose ground state is “easy” (both to find and
to prepare in an experimental setup). Then, if we prepare a quan-
tum system to be in the ground state of H0, and then adiabatically
change the Hamiltonian for a time T according to

H(t) =
(

1 − t

T

)
H0 + t

T
HP, (1)

then if T is large enough, and H0 and HP do not commute,
the quantum system will remain in the ground state for all
times, by the adiabatic theorem of quantum mechanics. At time
T, measuring the quantum state will return a solution of our
problem.

There has been debate about whether or not these algorithms
would actually be useful: i.e., whether an adiabatic quantum opti-
mizer would run any faster than classical algorithms [3–9], due to
the fact that if the problem has size N, one typically finds

T = O
[

exp
(
αNβ

)]
, (2)

in order for the system to remain in the ground state, for pos-
itive coefficients α and β, as N → ∞. This is a consequence of
the requirement that exponentially small energy gaps between
the ground state of H(t) and the first excited state, at some
intermediate time, not lead to Landau–Zener transitions into

1In this paper, when a generic statement is true for both NP-complete and
NP-hard problems, we will refer to these problems as NP problems. Formally
this can be misleading as P is contained in NP, but for ease of notation we will
simply write NP.

excited states [5] 2. While it is unlikely that NP-complete prob-
lems can be solved in polynomial time by AQO, the coeffi-
cients α, β may be smaller than known classical algorithms,
so there is still a possibility that an AQO algorithm may be
more efficient than classical algorithms, on some classes of
problems.

There has been substantial experimental progress toward
building a device capable of running such algorithms [11–13],
when the Hamiltonian HP may be written as the quantum ver-
sion of an Ising spin glass. A classical Ising model can be written
as a quadratic function of a set of N spins si = ±1:

H (s1, . . . , sN) = −
∑

i < j

Jijsisj −
N∑

i = 1

hisi. (3)

The quantum version of this Hamiltonian is simply

HP = H
(
σz

1, . . . , σ
z
N

)
(4)

where σz
i is a Pauli matrix (a 2 × 2 matrix, whose cousin (1 +

σz
i )/2 has eigenvectors |0, 1〉 with eigenvalues 0, 1) acting on the

ith qubit in a Hilbert space of N qubits {|+〉, |−〉}⊗N , and Jij and
hi are real numbers. We then choose H0 to consist of transverse
magnetic fields [11]:

H0 = −h0

N∑

i = 1

σx
i , (5)

so that the ground state of H0 is an equal superposition of all pos-
sible states in the eigenbasis of HP [equivalent to the eigenbasis
of the set of operators σz

i (i = 1, . . . , N)]. This means that one

2If one is only interested in approximate solutions (for example, finding a
state whose energy per site is optimal, in the thermodynamic (N → ∞) limit,
as opposed to finding the exact ground state), one expects T = O(Nγ) [5, 10].
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as well as in other variational quantum  algorithms8. Optimization protocols of several variations of the QAOA 
have also been recently  studied9.

In this work, we investigate classical optimizers and circuit depths p to !nd the optimal optimizer choice 
and ansatz depth for the minimum vertex cover problem under realistic device noise. We utilized a noise model 
sampled from the IBM Belem quantum computer to simulate the e"ects of noise on the e#cacy of the algorithm. 
To the best of our knowledge, this is the !rst investigation of optimal circuit depth for QAOA with noise.

$e remainder of the paper is structured as follows: Section "Quantum approximate optimization algorithm 
and minimum vertex cover problem" revises the details of the minimum vertex cover problem and the QAOA 
algorithm, Section "Classical optimizers and comparisons" describes the optimizers used, and the test methodol-
ogy followed in this work, and Section "Results" presents our !ndings and discusses their signi!cance.

Quantum approximate optimization algorithm and minimum vertex cover problem
Minimum vertex cover problem
$e Minimum Vertex Cover problem is an example of a binary optimization problem that is NP-complete. A vertex 
cover of a graph G = (V ,E) , is a set of vertices V  ⊆ V  , such that for every edge e = (u, v)  E, u  V ′ ∪ v  V ′ . 
$e minimum vertex cover is a set of vertices V  , that is the smallest possible set satisfying the above condition 
for a given graph G. $e minimum vertex cover problem is to !nd a set V .

$e minimum vertex cover problem can be formulated as the following binary optimization problem:

In Fig. 1, we provide examples of graphs that illustrate the minimum vertex cover problem.
Binary optimization problems, like the minimum vertex cover problem, have their solutions encoded in a bit 

string and require an algorithm capable of !nding the appropriate bit string to minimize the cost function. For 
the minimum vertex cover, each bit in the bit string corresponds to a vertex in the problem graph. A bit value 
of 1 indicates that the vertex is in the cover set, and a bit value of 0 indicates that the vertex is not in the cover 
set. $e QAOA is one such quantum algorithm capable of !nding an approximate solution in the form of a bit 
string, read out of the quantum device directly through measurement. Each qubit corresponds to a vertex in the 
graph, and the measured value of 0 or 1, forms a bit string solution for the problem.

Quantum approximate optimization algorithm
$e quantum approximate optimization algorithm (QAOA) is used to solve combinatorial optimization prob-
lems using a hybrid quantum-classical  framework6. Many real-world problems can be formulated such that the 
solutions are N-bit binary strings of the form

which minimize the classical cost function for m clauses,

Cα(z) = 1 if clause α is satis!ed by z and 0  otherwise6. $rough the substitution of spin-operators σ z
i  for each zi 

in z, one can build the cost Hamiltonian HC,

(1)Minimize:
∑

i V

xi

(2)Subject to: xi + xj  1, ∀(i, j) ∈ E

(3)and: xi  {0, 1}, ∀i  V

(4)z = z1z2 . . . zN ,

(5)C(z) =
m

∑

α=1

Cα(z).

(6)HC = C(σ z
1 , σ

z
2 , . . . , σ

z
N ).

Figure 1.  In the three graphs above, the red nodes show the set of vertices forming each graph’s respective 
minimum vertex cover. Each edge in the graph under consideration must have, at least one vertex in the cover. 
$e cover forms the minimum cover of a graph, when it contains the fewest number of vertices, whilst ensuring 
each edge is still incident to at least one.
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In this work, we investigate classical optimizers and circuit depths p to !nd the optimal optimizer choice 
and ansatz depth for the minimum vertex cover problem under realistic device noise. We utilized a noise model 
sampled from the IBM Belem quantum computer to simulate the e"ects of noise on the e#cacy of the algorithm. 
To the best of our knowledge, this is the !rst investigation of optimal circuit depth for QAOA with noise.

$e remainder of the paper is structured as follows: Section "Quantum approximate optimization algorithm 
and minimum vertex cover problem" revises the details of the minimum vertex cover problem and the QAOA 
algorithm, Section "Classical optimizers and comparisons" describes the optimizers used, and the test methodol-
ogy followed in this work, and Section "Results" presents our !ndings and discusses their signi!cance.

Quantum approximate optimization algorithm and minimum vertex cover problem
Minimum vertex cover problem
$e Minimum Vertex Cover problem is an example of a binary optimization problem that is NP-complete. A vertex 
cover of a graph G = (V ,E) , is a set of vertices V  ⊆ V  , such that for every edge e = (u, v)  E, u  V ′ ∪ v  V ′ . 
$e minimum vertex cover is a set of vertices V  , that is the smallest possible set satisfying the above condition 
for a given graph G. $e minimum vertex cover problem is to !nd a set V .

$e minimum vertex cover problem can be formulated as the following binary optimization problem:

In Fig. 1, we provide examples of graphs that illustrate the minimum vertex cover problem.
Binary optimization problems, like the minimum vertex cover problem, have their solutions encoded in a bit 

string and require an algorithm capable of !nding the appropriate bit string to minimize the cost function. For 
the minimum vertex cover, each bit in the bit string corresponds to a vertex in the problem graph. A bit value 
of 1 indicates that the vertex is in the cover set, and a bit value of 0 indicates that the vertex is not in the cover 
set. $e QAOA is one such quantum algorithm capable of !nding an approximate solution in the form of a bit 
string, read out of the quantum device directly through measurement. Each qubit corresponds to a vertex in the 
graph, and the measured value of 0 or 1, forms a bit string solution for the problem.

Quantum approximate optimization algorithm
$e quantum approximate optimization algorithm (QAOA) is used to solve combinatorial optimization prob-
lems using a hybrid quantum-classical  framework6. Many real-world problems can be formulated such that the 
solutions are N-bit binary strings of the form

which minimize the classical cost function for m clauses,

Cα(z) = 1 if clause α is satis!ed by z and 0  otherwise6. $rough the substitution of spin-operators σ z
i  for each zi 

in z, one can build the cost Hamiltonian HC,

(1)Minimize:
∑

i V

xi

(2)Subject to: xi + xj  1, ∀(i, j) ∈ E

(3)and: xi  {0, 1}, ∀i  V

(4)z = z1z2 . . . zN ,

(5)C(z) =
m

∑

α=1

Cα(z).

(6)HC = C(σ z
1 , σ

z
2 , . . . , σ

z
N ).

Figure 1.  In the three graphs above, the red nodes show the set of vertices forming each graph’s respective 
minimum vertex cover. Each edge in the graph under consideration must have, at least one vertex in the cover. 
$e cover forms the minimum cover of a graph, when it contains the fewest number of vertices, whilst ensuring 
each edge is still incident to at least one.

3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16011  |  https://doi.org/10.1038/s41598-024-66625-6

www.nature.com/scientificreports/

!e cost hamiltonian for the minimum vertex cost problem is given by:

for an appropriate choice of A and B10. !ese constant terms are introduced because the minimum vertex cover 
problem contains hard constraints, which are not compatible with the QAOA, which solves only quadratic 
unconstrained binary optimization problems. !e constant terms A and B refer to the weighting constants in 
the Hamiltonian. B weights the primary objective, minimizing the size of the vertex cover, while A weights a 
constraint or penalty term, that every edge have at least one of its vertices in the minimum cover. Since QUBO 
problems are unconstrained by nature, so" constraints in the form of penalty terms, forming so" constraints, 
are required.

Next, one can de#ne a mixer Hamiltonian HM,

!rough the application of layers of alternating cost and mixer Hamiltonians to the initial state |+ ⊗N , 
an equally-weighted superposition of all states in the computational basis, the QAOA circuit from Fig. 2 is 
 constructed6. !is yields

where p > 1 is the number of layers in the circuit with 2p parameters, γ⃗i and β⃗i with i = 1, 2, . . . , p . A classical 
optimizer can be used to alter the parameters, to minimize the expectation value,

If  γ ∗ and  β∗ minimize Fp , and if the value of the true solution is given by z  , then the approximation ratio 
is given by,

!e approximation of the solution z  can then be obtained through sampling of the state

prepared with the optimal parameters  γ ∗ and  β∗.

(7)HC = A
∑

(u,v) E

(1− xu)(1− xv)+ B
∑

v V

xv

(8)HM =
N

∑

j=1

σ x
j .

(9)
∣

∣

∣
ψp

(

 γ ,  β
)〉

= e−iβpHM e−iγpHC . . . e−iβ1HM e−iγ1HC |+〉⊗N ,

(10)Fp
(

 γ ,  β
)

=
〈

ψp

(

 γ ,  β
)
∣

∣

∣
HC

∣

∣

∣
ψp

(

 γ ,  β
)〉

.

(11)

(

 γ ,  β
)

z∗
.

(12)
∣

∣

∣
ψp

(

 γ ∗,  β∗
)〉

,

Figure 2.  !e QAOA circuit consists of p layers of the cost and mixer Hamiltonians, HC and HM respectively. 
!e initial |+ ⊗N state is prepared and every qubit is measured a"er applying the QAOA circuit.

A Pellow-Jarman, S McFarthing, IS, DK Park, A Pillay, F Petruccione, The effect of classical optimizers and Ansatz depth on QAOA performance in noisy devices. Sci Rep 14, 16011 (2024)
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A QCNN to classify N-qubit input states is thus characterized 
by O(log(N)) parameters. This corresponds to a double exponential 
reduction compared with a generic quantum circuit-based classifier19 
and allows for efficient learning and implementation. For example, 
given a set of M classified training vectors {(|ψα〉, yα): α = 1, …, M}, 
where |ψα〉 are input states and yα = 0 or 1 are corresponding binary 
classification outputs, one could compute the mean squared error

MSE ¼ 1
2M

XM

α¼1

yi " ffUi;Vj;Fg ψαj ið Þ
! "2

ð1Þ

Here, ffUi;Vj;Fg ψαj ið Þ
I

 denotes the expected QCNN output value for 
input |ψα〉. Learning then consists of initializing all unitaries and 
successively optimizing them until convergence, for example via 
gradient descent.

To gain physical insight into the mechanism underlying QCNNs 
and motivate their application to the problems under consideration, 
we now relate our circuit model to two well-known concepts in 
quantum information theory—the multiscale entanglement renor-
malization ansatz26 (MERA) and QEC. The MERA framework pro-
vides an efficient tensor network representation of many classes of 
interesting many-body wavefunctions, including those associated 
with critical systems26–28. A MERA can be understood as a quantum 
state generated by a sequence of unitary and isometry layers applied 

to an input state (for example |00〉). While both types of layers apply 
quasilocal unitary gates, each isometry layer first introduces a set 
of new qubits in a predetermined state, such as |0〉 (Fig. 1c). This 
exponentially growing, hierarchical structure allows for the long-
range correlations associated with critical systems. The QCNN cir-
cuit has similar structure but runs in the reverse direction. Hence, 
for any given state |ψ〉 with a MERA representation, there is always 
a QCNN that recognizes |ψ〉 with deterministic measurement out-
comes; one such QCNN is simply the inverse of the MERA circuit.

For input states other than |ψ〉, however, such a QCNN does not 
generally produce deterministic measurement outcomes. These 
additional degrees of freedom distinguish a QCNN from a MERA. 
Specifically, we can identify the measurements as syndrome mea-
surements in QEC29, which determine error correction unitaries 
Vj to apply to the remaining qubit(s). Thus, a QCNN circuit with 
multiple pooling layers can be viewed as a combination of a MERA 
(an important variational ansatz for many-body wavefunctions) 
and nested QEC (a mechanism to detect and correct local quantum 
errors without collapsing the wavefunction). This makes QCNNs a 
powerful architecture for classifying input quantum states or devis-
ing new QEC codes. In particular, for QPR, the QCNN can provide 
a MERA realization of a representative state |ψ0〉 in the target phase. 
Other input states within the same phase can be viewed as |ψ0〉 with 
local errors, which are repeatedly corrected by the QCNN in mul-
tiple layers. In this sense, the QCNN circuit can mimic renormal-
ization-group flow, a methodology that successfully classifies many 
families of quantum phases30. For QEC optimization, the QCNN 
structure allows for simultaneous optimization of efficient encoding 
and decoding schemes with potentially rich entanglement structure.

Detecting a 1D symmetry-protected topological phase
We first demonstrate the potential of a QCNN by applying it to 
QPR in a class of 1D many-body systems. Specifically, we consider a 
Z2 ´Z2
I

 symmetry-protected topological (SPT) phase P
I
, a phase con-

taining the S = 1 Haldane chain31, and ground states {|ψG〉} of a family 
of Hamiltonians on a spin-1/2 chain with open boundary conditions:

H ¼ "J
XN"2

i¼1

ZiXiþ1Ziþ2 " h1
XN

i¼1

Xi " h2
XN"1

i¼1

XiXiþ1 ð2Þ

where Xi, Zi are Pauli operators for the spin at site i, and h1, h2 and J 
are parameters of the Hamiltonian. The Z2 ´Z2

I
 symmetry is gener-

ated by XevenðoddÞ ¼
Q

i2evenðoddÞ
Xi

I

. Figure 2a shows the phase diagram 

as a function of (h1/J, h2/J). When h2 = 0, the Hamiltonian is exactly 
solvable via the Jordan–Wigner transformation30, confirming that P

I
 

is characterized by non-local order parameters. When h1 = h2 = 0, all 
terms are mutually commuting, and a ground state is the 1D cluster 
state. Our goal is to identify whether a given, unknown ground state 
drawn from the phase diagram belongs to P

I
.

As an example, we first present an exact, analytical QCNN cir-
cuit that recognizes P

I
 (Fig. 2b). The convolution layers involve 

controlled-phase gates as well as Toffoli gates with controls in the 
X-basis, and pooling layers perform phase-flips on remaining qubits 
when one adjacent measurement yields X = −1. This convolution–
pooling unit is repeated d times, where d is the QCNN depth. The 
fully connected layer measures Zi−1XiZi+1 on the remaining qubits. 
Figure 2c shows the QCNN output for a system of N = 135 spins 
and d = 1, …, 4 along h1 = 0.5J, obtained using matrix product 
state simulations. As d increases, the measurement outcomes show 
sharper changes around the critical point, and the output of a d = 2 
circuit already reproduces the phase diagram with high accuracy 
(Fig. 2a). This QCNN can also be used for other Hamiltonian mod-
els belonging to the same phase, such as the S = 1 Haldane chain31 
(see Methods).
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Fig. 1 | The concept of QCNNs. a, Simplified illustration of classical CNNs. 
A sequence of image-processing layers transforms an input image into 
a series of feature maps (blue rectangles) and finally into an output 
probability distribution (purple bars). C, convolution; P, pooling; FC, fully 
connected. b, QCNNs inherit a similar layered structure. Boxes represent 
unitary gates or measurement with feed-forwarding. c, The QCNN and the 
MERA share the same circuit structure, but run in reverse directions. Image 
of cat from https://www.pexels.com/photo/grey-and-white-short-fur-
cat-104827/.
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The concept of QCNNs. (a) Simplified illustration of classical CNNs. 
A sequence of image-processing layers transforms an input image into 
a series of feature maps (blue rectangles) and finally into an output 
probability distribution (purple bars). C, convolution; P, pooling; FC, fully 
connected. (b) QCNNs inherit a similar layered structure. Boxes represent 
unitary gates or measurement with feed-forwarding.
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constraints, such as circuit topology or allowable gates, to make
them computationally feasible. To the best of the author’s
knowledge, there is currently no framework that can generate
hierarchical architectures such as the QCNN without imposing
such constraints.
One problem with the cell-based representation for NAS is that

the macro architecture, the sequence of cells, is fixed and must be
chosen22. Recently, Liu et al.26 proposed a hierarchical representa-
tion as a solution, where a cell sequence acts as the third level of a
multi-level hierarchy. In this representation, lower-level motifs act
as building blocks for higher-level ones, allowing both macro and
micro architecture to be learned. In this work, we follow a similar
approach and represent a QCNN architecture as a hierarchy of
directed graphs. On the lowest level are primitive operations such
as convolutions and pooling. The second level consists of
sequences of these primitives, such as convolution-pooling or
convolution–convolution units. Higher-level motifs then contain
sequences of these lower-level motifs. For example, the third level
could contain a sequence of three convolution-pooling units, as
seen in Fig. 1d. For the primitives, we define hyperparameters
such as strides and pooling filters that control their architectural
effect. This way, the representation can capture design motifs on
multiple levels, from the distribution of gates in a single layer to
overall hierarchical patterns such as tensor tree networks. We
demonstrate this by generating a family of QCNN architectures
based on popular motifs in literature. We then benchmark this
family of models and show that alternating architecture has a
greater impact on model performance than other modelling
components. By alternating architecture, we mean the following:
given a quantum circuit that consist of n unitary gates, an altered
architecture consists of the same n gates rearranged in a different
way on the circuit. The types of rearrangements may be changing
which qubits the gates act upon, altering the order of gate
occurrences, or adjusting larger architectural motifs, such as
pooling specific qubits (stop using them) while leaving others

available for subsequent gates and so on. We create architectural
families to show the impact of alternating architecture, any two
instances of the family will have the exact same unitaries, just
applied in a different order on different qubits. Consider the
machine-learning pipeline for classifying musical genres from
audio signals, seen in Fig. 1. We start with a 30-s recording of a
song (Fig. 1a) and transform it in two ways. The first is tabular form
(Fig. 1b), derived from standard digital signal processing statistics
of the audio signal. The second is image form (Fig. 1c), constructed
using a Mel-frequency spectrogram. Both datasets are bench-
marked separately, with their own data preprocessing and
encoding techniques applied. For the tabular data, we test
Principal Component Analysis (PCA) and tree-based feature
selection before encoding it in a quantum state using either
qubit, IQP, or amplitude encoding. Once encoded, we choose two-
qubit unitary ansatzes (Supplementary Fig. 1) Um and Vm for the
convolution and pooling primitives m= 1, 2,…, 6, as shown in
Fig. 1d. We test them across different instances of an architecture
family. Of all the components in this pipeline, alternating
architecture, that is changing how each Um and each Vm are
spread across the circuit, had the greatest impact on model
performance. In addition to our theoretical framework, we
implement it as an open-source Python package to enable
dynamic QCNN creation and facilitate search space design for
NAS. It allows users to experimentally determine suitable
architectures for specific modelling setups, such as finding circuits
that perform well under a specific noise or hardware configura-
tion, which is particularly relevant in the Noisy Intermediate-Scale
Quantum (NISQ)48 era. In addition, as more qubits become
available, the hierarchical nature of our framework provides a
natural way to scale up the same model. In summary, our
contributions are the architectural representation for QCNNs, a
Python package for dynamic QCNN creation, and experimental
results on the potential advantage of architecture search in a
quantum setting.

Fig. 1 Machine-learning pipeline for music genre classification. The machine-learning pipeline we implemented for music genre
classification. Given an audio signal of a song (a), we generate two forms of data: tabular (b) and image (c). Each form has data preprocessing
applied before being encoded into a quantum state (d). The QCNN circuit shown in (d) favours Principal Component Analysis (PCA) because
qubits are pooled from bottom to top, and principal components are encoded from top to bottom. This architecture is an instance of the
reverse binary tree family that we generated with our framework.
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The remainder of this paper is structured as follows: we begin

with our main results by summarising the architectural represen-
tation for QCNNs and then show the effect of alternating
architecture, justifying its importance. We then provide an
example of architecture search with our representation by
employing an evolutionary algorithm to perform QPR. Following
this, we give details of our framework by providing a mathema-
tical formalism for the representation and describing its use. Next,
with the formalism at hand, we show how it facilitates search
space design by describing the space we created for the
benchmark experiments. We then discuss generalisations of
formalism and the applicability of our representation with search
algorithms. After this, we elaborate on our experimental setup in
“Methods”. Finally, we discuss applications and future steps.

RESULTS
Architectural representation
Figure 2 shows our architectural representation for QCNNs. We
define two-qubit unitary ansatzes from a given set of gates, and
capture design motifs Ml

k on different levels l of the hierarchy. On
the lowest level l= 1, we define primitives which act as building
blocks for the architecture. For example, a convolution operation
with stride one is encoded as the directed graph M1

1, and with
stride three as M1

2. The directed graph M1
3 is a pooling operation

that measures the bottom half of the circuit, and M1
4 measures

from the inside outwards. Combined, they can form higher-level
motifs such as convolution-pooling units M2

1 (e),
convolution–convolution units M2

2, or convolution-pooling-
convolution units M2

3. The highest level l= L contains only one
motif ML

1, the complete QCNN architecture. ML
1 is a hierarchy of

directed graphs fully specifying how to spread the unitary
ansatzes across the circuit. This hierarchical representation is
based on the one from ref. 26 for deep neural networks (DNNs),
and allows for the capture of modularised design patterns and
repeated motifs. The two lines of code (e) and (f) show the power
of this representation as it is all that is required to create the entire
QCNN circuit from Fig. 1d. The code comes from the Python
package we implemented based on the work of this paper. It
facilitates dynamic QCNN creation and search space design.

Architectural impact
The details regarding specific notation and representation of the
framework are given after this section, first we justify it with the
following experimental results. We also give background on
QCNNs in Supplementary Note 1 and on quantum machine
learning in Supplementary Note 2 for more context. To illustrate
the impact of architecture on model performance, we compare
the fixed architecture from the experiments of ref. 29 to other
architectures in the same family while keeping all other
components the same. The only difference in each comparison
is architecture (how the unitaries are spread across the circuit). The

Fig. 2 Hierarchical quantum circuit representation. An overview of our architectural representation for QCNNs. From a given set of gates, we
build two-qubit unitary ansatzes. The representation then captures design motifs Ml

k on different levels l of the hierarchy. On the lowest level
l= 1, we define primitives which act as building blocks for the architecture. For example, a convolution operation with stride one is encoded
as the directed graph M1

1. The directed graph M1
3 is a pooling operation that measures the bottom half of the circuit. Combined, they form the

level two motif (e): a convolution-pooling unit M2
1. Higher-level motifs consist of combinations of lower-level motifs up until the final level l= L,

which contains only one motif ML
1, the complete QCNN architecture. ML

1 is a hierarchy of directed graphs fully specifying how to spread the
unitary ansatzes across the circuit. The two lines of code (e) and (f) show the power of this representation as it is all that is required to create
the entire QCNN circuit from Fig. 1d. The code comes from the Python package we implemented based on the work of this paper. It facilitates
dynamic QCNN creation and search space design.
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the same sample complexity5:

Mmin ! 1:962

ðarcsin ffiffiffi
p

p #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arcsin p0

p
Þ

(2)

where P represents the probability of measuring a non-zero
expectation value and P0= 0.5. Equation (2) calculates the
minimum number of measurements required to be 95% confident
that P ≠ 0.5, with P being the expectation value of the circuit U
encoded with the ground state ψg

"" #
transformed into a

probability: p ! ð ψg

$ ""U ψg

"" #
þ 1Þ=2. Therefore a well-performing

QCNN will yield low values of Mmin near the phase boundary for
points within the SPT phase. We define the fitness of an
architecture as a linear combination of the sample complexity
values Min,Mmiddle for points in the SPT phase, and the mean
squared error MSEout for points outside the boundary. Figure 5
illustrates the points considered for Min, Mmiddle and MSEout.
During search we assigned the majority of the weight to Min as the
goal is to develop a model that confidently identifies SPT phases
near the boundary. To prevent a model from classifying all points
as SPT, MSEout is included, while Mmiddle ensures overall good
performance. Finally, during search we added a regularisation
term for the number of parameters, to find well-performing
architectures with low computational complexity.
Table 3 and Fig. 5 show the performance of the best

architecture found during search. The search algorithm identified
a QCNN with only 11 parameters, in contrast to the 1308
parameters of the original reference architecture. For points in the
SPT phase near the boundary, the sample complexity of the
discovered architecture (Min= 36.079) is lower than that of the
reference (61.523), resulting in 25 fewer measurements required
on average. Although the reference architecture exhibits slightly
better sample complexity for points in the middle of the phase
boundary (Mmiddle= 10.992) compared to the discovered archi-
tecture (Mmiddle= 13.253), and a marginally lower MSE for points
outside the phase boundary (MSEout= 0.164 compared to
MSEout= 0.167), the improvements in Min and the number of
parameters are substantial and more advantageous. The discov-
ered architecture is shown in Supplementary Fig. 2, and the phase
diagram it generates is shown in Fig. 5. The search was conducted
on a system equipped with two Intel Xeon E5-2640 processors
(2.0 GHz) and 128 GB of RAM, and it took ~2 h to discover the final
architecture (over 831 generations). Although we anticipate that

extending the search may yield even better architectures, the
primary goal of this experiment was to demonstrate a represen-
tative example of the search process and showcase the ease of
obtaining promising results. This emphasises the potential
advantages of architecture search in quantum computing tasks,
where the computational cost of a circuit can be reduced while
maintaining or even improving performance. We attribute this
success to a well-defined search space, with our representation
aiming to simplify the process of creating such spaces. Moreover,
our representation allows for the incorporation of hardware
constraints, facilitating the search for architectures that perform
well on specific quantum devices. We believe this to be a
necessary step towards the development of efficient quantum
algorithms for real-world applications. By employing a well-
structured representation and search space, we can streamline the
process of discovering optimised quantum circuit architectures
that are better suited for specific tasks and hardware.

Digraph formalism
We represent the QCNN architecture as a sequence of directed
graphs, each acting as a primitive operation such as a convolution
(Qconv) or pooling (Qpool). A primitive is the directed graph
G= (Q, E); its nodes Q represent available qubits, and oriented
edges E the connectivity of the unitary applied between a pair of
them. The direction of an edge indicates the order of interaction
for the unitary. For example, a CNOT gate with qubit i as control
and j as target is represented by the edge from qubit i to qubit j.
We also introduce other primitives, such as Qfree, that free up
pooled qubits for future operations. The effect of a primitive is
based on its hyperparameters and the effect of its predecessor.
This way, their individual and combined architectural effects are
captured, enabling them to be dynamically stacked one after
another to form the second level l= 2 motifs. Stacking these
stacks in different ways constitutes higher-level motifs until a final
level l= L, where one motif constitutes the entire QCNN
architecture. In the case of pooling, controlled unitaries are used
in place of measurement due to the deferred measurement
principle51. We define a QCNN architecture in Definition 1.
Definition 1. The k= 1, 2,…Kl motif on level l= 1, 2,…, L is the

tuple Ml
k ! ðMl#1

j jj 2 f1; 2; ¼ ; Kl#1gÞ. Motifs on the lowest level
M1

k are primitive operations, which form the set
Mð1Þ ! fM1

1;M
1
2; ¼ ;M1

K1
g. At the highest level l= L there is only

one motif ML
1 which is a hierarchy of tuples. ML

1 is flattened
through an assemble operation: M ! assembleðML

1Þ which
encodes each primitive into a directed graph Gm= (Qm, Em), the
nodes Qm are available qubits and edges Em the connectivity of

Fig. 5 Quantum phase recognition result. Expectation values for
the circuit found via evolutionary search for a system of
N= 15 spins. Points represent a test set of 64 × 64 ground states
for various h1 and h2 values of the Hamiltonian, J= 1. The inside,
middle and outside points were used to evaluate an architecture’s
fitness during search. The same colour scale as in5 is used to
facilitate comparison.

Table 3. Performance of architecture found with an evolutionary
search.

Metric Reference Found

Number of parameters 1308 11
Sample complexity (inside) 61.523 36.079
Sample complexity (middle) 10.992 13.253

MSE (outside) 0.164 0.167

Different performance metrics (lower is better) for the 15-qubit QCNN from
ref. 5 and the architecture found via evolutionary search. The best
performing architecture for each metric is highlighted in bold. Sample
complexity represents the expected number of measurements required to
be 95% confident that the ground state is in the SPT phase (non-zero
expectation value). Metrics are calculated on a set of points in the test set,
where inside refers to SPT points near the phase boundary, outside to non-
SPT points near the phase boundary and middle to points in between, as
shown in Fig. 5.
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points within the SPT phase. We define the fitness of an
architecture as a linear combination of the sample complexity
values Min,Mmiddle for points in the SPT phase, and the mean
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near the boundary. To prevent a model from classifying all points
as SPT, MSEout is included, while Mmiddle ensures overall good
performance. Finally, during search we added a regularisation
term for the number of parameters, to find well-performing
architectures with low computational complexity.
Table 3 and Fig. 5 show the performance of the best

architecture found during search. The search algorithm identified
a QCNN with only 11 parameters, in contrast to the 1308
parameters of the original reference architecture. For points in the
SPT phase near the boundary, the sample complexity of the
discovered architecture (Min= 36.079) is lower than that of the
reference (61.523), resulting in 25 fewer measurements required
on average. Although the reference architecture exhibits slightly
better sample complexity for points in the middle of the phase
boundary (Mmiddle= 10.992) compared to the discovered archi-
tecture (Mmiddle= 13.253), and a marginally lower MSE for points
outside the phase boundary (MSEout= 0.164 compared to
MSEout= 0.167), the improvements in Min and the number of
parameters are substantial and more advantageous. The discov-
ered architecture is shown in Supplementary Fig. 2, and the phase
diagram it generates is shown in Fig. 5. The search was conducted
on a system equipped with two Intel Xeon E5-2640 processors
(2.0 GHz) and 128 GB of RAM, and it took ~2 h to discover the final
architecture (over 831 generations). Although we anticipate that

extending the search may yield even better architectures, the
primary goal of this experiment was to demonstrate a represen-
tative example of the search process and showcase the ease of
obtaining promising results. This emphasises the potential
advantages of architecture search in quantum computing tasks,
where the computational cost of a circuit can be reduced while
maintaining or even improving performance. We attribute this
success to a well-defined search space, with our representation
aiming to simplify the process of creating such spaces. Moreover,
our representation allows for the incorporation of hardware
constraints, facilitating the search for architectures that perform
well on specific quantum devices. We believe this to be a
necessary step towards the development of efficient quantum
algorithms for real-world applications. By employing a well-
structured representation and search space, we can streamline the
process of discovering optimised quantum circuit architectures
that are better suited for specific tasks and hardware.

Digraph formalism
We represent the QCNN architecture as a sequence of directed
graphs, each acting as a primitive operation such as a convolution
(Qconv) or pooling (Qpool). A primitive is the directed graph
G= (Q, E); its nodes Q represent available qubits, and oriented
edges E the connectivity of the unitary applied between a pair of
them. The direction of an edge indicates the order of interaction
for the unitary. For example, a CNOT gate with qubit i as control
and j as target is represented by the edge from qubit i to qubit j.
We also introduce other primitives, such as Qfree, that free up
pooled qubits for future operations. The effect of a primitive is
based on its hyperparameters and the effect of its predecessor.
This way, their individual and combined architectural effects are
captured, enabling them to be dynamically stacked one after
another to form the second level l= 2 motifs. Stacking these
stacks in different ways constitutes higher-level motifs until a final
level l= L, where one motif constitutes the entire QCNN
architecture. In the case of pooling, controlled unitaries are used
in place of measurement due to the deferred measurement
principle51. We define a QCNN architecture in Definition 1.
Definition 1. The k= 1, 2,…Kl motif on level l= 1, 2,…, L is the

tuple Ml
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k are primitive operations, which form the set
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one motif ML
1 which is a hierarchy of tuples. ML
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through an assemble operation: M ! assembleðML

1Þ which
encodes each primitive into a directed graph Gm= (Qm, Em), the
nodes Qm are available qubits and edges Em the connectivity of

Fig. 5 Quantum phase recognition result. Expectation values for
the circuit found via evolutionary search for a system of
N= 15 spins. Points represent a test set of 64 × 64 ground states
for various h1 and h2 values of the Hamiltonian, J= 1. The inside,
middle and outside points were used to evaluate an architecture’s
fitness during search. The same colour scale as in5 is used to
facilitate comparison.

Table 3. Performance of architecture found with an evolutionary
search.

Metric Reference Found

Number of parameters 1308 11
Sample complexity (inside) 61.523 36.079
Sample complexity (middle) 10.992 13.253

MSE (outside) 0.164 0.167

Different performance metrics (lower is better) for the 15-qubit QCNN from
ref. 5 and the architecture found via evolutionary search. The best
performing architecture for each metric is highlighted in bold. Sample
complexity represents the expected number of measurements required to
be 95% confident that the ground state is in the SPT phase (non-zero
expectation value). Metrics are calculated on a set of points in the test set,
where inside refers to SPT points near the phase boundary, outside to non-
SPT points near the phase boundary and middle to points in between, as
shown in Fig. 5.
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FIG. 1. Overview of our method, a domain-specific-language (DSL) enables ansatz generation via an evolutionary algorithm.
(a) A primitive is an edge generation pattern associated with a tensor. (b) Composition: Sequences of primitives form motifs;
sequences of motifs form higher-level motifs. (c) Specifying the number of nodes generates edges, and the associated tensor is
repeated and connected to each edge, forming a tensor network. (d) A specified network, being itself a tensor, can again be
associated with an edge generation pattern to form a new primitive. (e) The evolutionary algorithm mutates and crosses over
motifs each generation. (f) Once the ansatz is found, broken symmetries are restored.

Then for each primitive in this motif, a hypergraph
is generated where nodes correspond to these available
indices and edges to the connectivity of the associated
tensor. Specifically, these edges are generated based on
the primitives’ size-independent properties and the asso-
ciated tensor is repeatedly connected to each edge, form-
ing a tensor network. This way, the size-independent
properties encode the size scaling of the network. Since
a tensor network is itself a tensor, it can again be associ-
ated with an edge generation pattern, thereby forming a
new primitive, and allowing larger networks to be built
from sub-networks, hierarchically (d).

The evolutionary algorithm (e) makes use of this DSL
and attempts to construct motifs exhibiting high fitness
with respect to a chosen set of criteria. The algorithm
starts with a randomly initialised pool of primitives. The
tensors associated with these primitives are chosen from
a fixed set and contain variational parameters. Each gen-
eration, the motifs in the pool undergo tournament se-
lection. The fittest motifs are mutated by altering one of
their primitives’ size-independent properties, such as the
associated tensor or the edge generation pattern. They
are also crossed over by being composed in various ways
to produce new motifs, all of which are returned to the
pool. The fitness of a motif is evaluated over di!erent
system sizes, with penalties applied for energy, varia-
tional and structural complexity. The optimal ansatz
produced by this algorithm will generally not exhibit the
same symmetries as the system Hamiltonian. These bro-
ken symmetries can be restored (f) by projecting onto
the appropriate symmetry subspace.

Ansatz structure and expectation values The ansatz
generated by our method for the LMG and TFIM models

is shown in Figure 2. For N spins it generates the state

|ω,ε→ =
(

N→1∏

k=0

Cω

k,k+1R
ω

k+1

)


N→1∏

j=0

Rε

j



 |z,+→↑N , (1)

where ε and ω are variational parameters and |z,±→ are
the eigenstates of the Pauli-Z matrix with eigenvalues
±1. The two unitary operators appearing in |ω,ε→ are

Cω

ij
= ei

ω
2ZiYj and Rω

j
= e→i

ω
2Yj . (2)

Here (Xi, Yi, Zi) are the Pauli spin matrices associated
with the spin at site i ↑ {0, . . . , N ↓ 1} obeying periodic
boundary conditions: i+N ↔ i. As shown in [37] Section
1 of the Supplementary Material, it is possible to obtain
an exact representation of |ω,ε→ as a MPS. In this form
the ansatz reads

|ω,ε→ =
∑

ϑs

Tr(AsN→1 · · ·As1Bs0) |y, s0 . . . sN→1→ (3)

where

A+ =
1↗
2

[
e→i(ω+ε)/2 0

0 ei(ω+ε)/2

] [
cos ω

2 i sin ω

2

cos ω

2 ↓i sin ω

2

]
, (4)

B+ =
1↗
2

[
e→i(ω+ε)/2 0

0 e→i(ω→ε)/2

] [
cos ω

2 i sin ω

2

cos ω

2 i sin ω

2

]
, (5)

A→ = (A+)↓, B→ = (B+)↓. (6)

Both the TFIM and LMG models exhibit translational
invariance. However, this property is not shared by |ω,ε→
due to the lone B± matrix appearing in Eq. (3). It
seems that the complexity penalty on motifs during the
search prevents the generation of an explicitly transla-
tionally invariant state. This coincides with the idea
that symmetry-breaking ansatzes require lower structural
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FIG. 2. The ansatz generated by our method for the LMG
and TFIM models.

complexity for similar ground-state energy convergence
as symmetry-preserving ansatzes [38, 39]. We will restore
this symmetry through a minimal modification of |ω,ε→
by replacing the Bs0 with As0 in Eq. (3). This modifica-
tion marginally improves results for small systems, while
still converging to the same state as in Eq. (3) in the
thermodynamic limit. This results in the translationally
invariant ansatz

|ϑt→ =
1

M

∑

ωs

Tr(AsN→1 · · ·As0) |y, s0 . . . sN→1→ , (7)

where M is a normalisation factor. The structure of |ϑt→
allows expectation values to be calculated analytically
using a transfer matrix approach. See [37] Section 2 of
the Supplementary Material for details. We find that

↑Xi→ =
1

M2

[
c2(s↓ t)

st↓ 1
+

d2(s↓ t)

t2(st↓ 1)
(st)N

]
, (8)

↑Zi→ =
1

M2

[
cd((st)N ↓ 1)

st↓ 1

]
, (9)

↑ZiZi+r→ =
1

M2

[
f(r) + (st)Nf(↓r)

]
, (10)

where

f(r) =
c2d2 + (s↓ t)2(st)r

(st↓ 1)2
, (11)

M2 = 1 + (st)N , (12)

and

c = cos(ω), s = sin(ω), (13)

d = cos(ω + ε), t = sin(ω + ε). (14)

Results for the LMG Model The LMG Hamiltonian for
N spin- 12 particles reads

H = ↓ J

4N

∑

i<j

ZiZj ↓
h

2

N→1∑

i=0

Xi, (15)

where J and h set the strengths of the spin-spin inter-
action and external field respectively. The all-to-all na-
ture of the spin interaction results in the system’s mean-
field description becoming exact for certain predictions in

the thermodynamic limit. We first show that our ansatz
shares this property. Figure 2 shows that our approach
contains the mean-field result as a special case. Specifi-
cally, the first layer of Rε rotations generates a product
state amounting to a mean-field ansatz. When ω ↔= 0, the
second layer of CϑRϑ rotations then introduces correla-
tions beyond the mean-field level. To proceed, we calcu-
late the energy per spin in the thermodynamic limit with
respect to |ϑt→ using Eqs. (8) and (10). This yields

lim
N↑↓

↑H→
N

= ↓ c2d2

8(st↓ 1)2
↓ h(s↓ t)c2

2(st↓ 1)
, (16)

which is a function of ω and ε via Eqs. (13) and (14).
Minimising this expression with respect to these angles
produces

sin(ε) =

{
2h |2h| ↗ 1

sgn(h) otherwise
and ω = 0. (17)

The vanishing of ω implies that our ansatz reduces to a
product state generated by the first layer of Rε rotations.
Inserting this into Eq. (9) for ↑Zi→ yields the spontaneous
magnetisation

lim
N↑↓

1

2N

∑

i

↑Zi→ =
{
± 1

2

↘
1↓ 4h2 |2h| ↗ 1

0 otherwise
, (18)

from which we identify the critical value of h as hc = 1/2.
This field strength marks the transition between the
paramagnetic (|h| > hc) and ferromagnetic (|h| < hc)
phases. For the energy per spin we find

lim
N↑↓

↑H→
N

=

{
↓ 1

2 (h
2 + 1

4 ) |h| ↗ hc

↓ |h|
2 |h| > hc

. (19)

Both Eqs. (18) and (19) are exact results for the thermo-
dynamic limit.
For finite systems, the optimal value of ω is non-zero,

and the layer of CϑRϑ rotations in Eq. (1) will introduce
correlations between the spins. This brings about a ma-
jor improvement in accuracy compared to the product
state mean-field ansatz. We further this improvement
by restoring in our ansatz the symmetries present in the
LMG Hamiltonian (15). Specifically, H exhibits permu-
tation symmetry under the exchange of any two spins,
and also parity symmetry under a ϖ-rotation about the
x-axis, which sends (Xi, Yi, Zi) to (Xi,↓Yi,↓Zi). We en-
force these symmetries on the ansatz |ϑt→ by projecting it
into the relevant symmetry subspaces. As shown in [37]
Section 3 of the Supplementary Material, this yields a
state |ϑp→ within the (2S + 1)-dimensional subspace cor-
responding to the maximum magnitude S = N/2 of the
total spin. The analytic expression for |ϑp→, parametrised
by ω and ε, now serves as a refined version of the original
ansatz. We use this symmetrised ansatz to estimate the
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FIG. 1. Overview of our method, a domain-specific-language (DSL) enables ansatz generation via an evolutionary algorithm.
(a) A primitive is an edge generation pattern associated with a tensor. (b) Composition: Sequences of primitives form motifs;
sequences of motifs form higher-level motifs. (c) Specifying the number of nodes generates edges, and the associated tensor is
repeated and connected to each edge, forming a tensor network. (d) A specified network, being itself a tensor, can again be
associated with an edge generation pattern to form a new primitive. (e) The evolutionary algorithm mutates and crosses over
motifs each generation. (f) Once the ansatz is found, broken symmetries are restored.

Then for each primitive in this motif, a hypergraph
is generated where nodes correspond to these available
indices and edges to the connectivity of the associated
tensor. Specifically, these edges are generated based on
the primitives’ size-independent properties and the asso-
ciated tensor is repeatedly connected to each edge, form-
ing a tensor network. This way, the size-independent
properties encode the size scaling of the network. Since
a tensor network is itself a tensor, it can again be associ-
ated with an edge generation pattern, thereby forming a
new primitive, and allowing larger networks to be built
from sub-networks, hierarchically (d).

The evolutionary algorithm (e) makes use of this DSL
and attempts to construct motifs exhibiting high fitness
with respect to a chosen set of criteria. The algorithm
starts with a randomly initialised pool of primitives. The
tensors associated with these primitives are chosen from
a fixed set and contain variational parameters. Each gen-
eration, the motifs in the pool undergo tournament se-
lection. The fittest motifs are mutated by altering one of
their primitives’ size-independent properties, such as the
associated tensor or the edge generation pattern. They
are also crossed over by being composed in various ways
to produce new motifs, all of which are returned to the
pool. The fitness of a motif is evaluated over di!erent
system sizes, with penalties applied for energy, varia-
tional and structural complexity. The optimal ansatz
produced by this algorithm will generally not exhibit the
same symmetries as the system Hamiltonian. These bro-
ken symmetries can be restored (f) by projecting onto
the appropriate symmetry subspace.

Ansatz structure and expectation values The ansatz
generated by our method for the LMG and TFIM models

is shown in Figure 2. For N spins it generates the state
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where ε and ω are variational parameters and |z,±→ are
the eigenstates of the Pauli-Z matrix with eigenvalues
±1. The two unitary operators appearing in |ω,ε→ are
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ij
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2ZiYj and Rω
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Here (Xi, Yi, Zi) are the Pauli spin matrices associated
with the spin at site i ↑ {0, . . . , N ↓ 1} obeying periodic
boundary conditions: i+N ↔ i. As shown in [37] Section
1 of the Supplementary Material, it is possible to obtain
an exact representation of |ω,ε→ as a MPS. In this form
the ansatz reads

|ω,ε→ =
∑
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Tr(AsN→1 · · ·As1Bs0) |y, s0 . . . sN→1→ (3)

where
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A→ = (A+)↓, B→ = (B+)↓. (6)

Both the TFIM and LMG models exhibit translational
invariance. However, this property is not shared by |ω,ε→
due to the lone B± matrix appearing in Eq. (3). It
seems that the complexity penalty on motifs during the
search prevents the generation of an explicitly transla-
tionally invariant state. This coincides with the idea
that symmetry-breaking ansatzes require lower structural
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motifs each generation. (f) Once the ansatz is found, broken symmetries are restored.
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ciated tensor is repeatedly connected to each edge, form-
ing a tensor network. This way, the size-independent
properties encode the size scaling of the network. Since
a tensor network is itself a tensor, it can again be associ-
ated with an edge generation pattern, thereby forming a
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The evolutionary algorithm (e) makes use of this DSL
and attempts to construct motifs exhibiting high fitness
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their primitives’ size-independent properties, such as the
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produced by this algorithm will generally not exhibit the
same symmetries as the system Hamiltonian. These bro-
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the eigenstates of the Pauli-Z matrix with eigenvalues
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Here (Xi, Yi, Zi) are the Pauli spin matrices associated
with the spin at site i ↑ {0, . . . , N ↓ 1} obeying periodic
boundary conditions: i+N ↔ i. As shown in [37] Section
1 of the Supplementary Material, it is possible to obtain
an exact representation of |ω,ε→ as a MPS. In this form
the ansatz reads
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Both the TFIM and LMG models exhibit translational
invariance. However, this property is not shared by |ω,ε→
due to the lone B± matrix appearing in Eq. (3). It
seems that the complexity penalty on motifs during the
search prevents the generation of an explicitly transla-
tionally invariant state. This coincides with the idea
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FIG. 3. RMS magnetisation of Eq. (20) vs h/J for the LMG
model. Exact results compared to the symmetrised ansatz.

FIG. 4. Relative ground-state energy error vs N for the LMG
model at di!erent field strengths h. Compares symmetrised
ansatz (solid) and MFT (dashed).

ground-state energy as well as the RMS magnetisation

Mrms =
1

2N

√〈
(
∑

i
Zi)

2
〉
. (20)

Figure 3 shows the result of this calculation of Mrms

for di!erent numbers of spins N . Remarkably, there is
no visible di!erence between our ansatz-based result and
the exact value of the magnetisation. This suggests that
the symmetrised ansatz |ωp→ captures finite-size e!ects
very accurately. Figure 4 shows the relative error in the
ground-state energy, εrel = (Epred ↑ Eexact)/(Eexact), for
di!erent field strengths h, plotted on a logarithmic scale
as N increases. For our symmetrised ansatz, this error
is at most of order 10→6 for h = hc = 1/2 and about
N = 25, and tends to zero as N increases. The result of

using the mean-field product state ansatz (with ϑ = 0) is
also shown. While this too becomes exact in the thermo-
dynamic limit, it fares much worse than the symmetrised
ansatz for finite system sizes.
Both the original ansatz |ωt→ and its symmetrised

counterpart |ωp→ produce exact results for Mrms and the
ground state energy within the thermodynamic limit.
However, these quantities probe limited features of the
two states, and it turns out that |ωt→ and |ωp→ have fun-
damentally di!erent characters, even in this limit. Specif-
ically, we found that |ωt→ reduces to a mean-field product
state as N ↓ ↔ due to the optimal value of ϑ vanishing.
In contrast, optimising |ωp→ yields a non-zero ϑ, even in
the N ↓ ↔ limit, thereby retaining the entanglement
from the CωRω rotations. This aligns with Refs. [40–
42], showing the exact ground state in the paramagnetic
phase always contains non-trivial entanglement and does
not reduce to a product state as N ↓ ↔. These observa-
tions underscore that the symmetrisation step can funda-
mentally alter the correlations present in the ansatz, and
that optimising the variational parameters before versus
after this step can yield very di!erent results.
Results for the TFIM The Hamiltonian for the TFIM

with N spin- 12 particles on a periodic chain is

H = ↑J

4

N→1∑

i=0

ZiZi+1 ↑
h

2

N→1∑

i=0

Xi, (21)

with J and h again the interaction and external field
strengths. We set J = 1 as before. For the LMG model
it was seen that the mean-field ansatz with ϑ = 0 in
Eq. (1) was su”cient for correctly predicting the critical
value of the external field strength and for calculating
the order parameter Mrms in the thermodynamic limit.
For the TFIM the situation is quite di!erent. Here, even
in the thermodynamic limit, the CωRω rotations play a
crucial role in introducing correlations between spins, and
are essential for shifting the estimate for the critical field
strength closer to its true value. Using the the ansatz in
Eq. (7) together with Eqs. (8) - (10) we find the energy
per spin in the thermodynamic limit to be

lim
N↑↓

↗H→
N

= ↑ s↑ t

4(st↑ 1)

(
(s↑ t) + 2hc2

)
↑ 1

4
. (22)

Minimising this expression with respect to ϑ and ϖ we
identify a critical field strength of

hc =
1 +

↘
2

4
≃ 0.604, (23)

above which the magnetisation ↗Zi→ in Eq. (9) vanishes.
This estimate for hc is indeed closer to the exact value
hex
c

= 0.5 when compared to the mean-field result of
hmf
c

= 1, which would follow from setting ϑ = 0 and
only varying ϖ. When |h| > hc the optimal values of
s = sin(ϑ) and t = sin(ϑ+ ϖ) are found to be s = (4h)→1

5

FIG. 5. TFIM long-range correlation ω
z

N/2 vs h/J . Shows
results from the symmetrised ansatz (finiteN , N → ↑), exact
values, and the mean-field prediction.

and t = sgn(h), while for |h| < hc these need to be solved
from

h =
2s

(s2 + 1)2
and t = 2hs2 + 2h→ s. (24)

While the TFIM Hamiltonian lacks the permutation sym-
metry of the LMG model, it retains the parity sym-
metry. We again restore this symmetry by project-
ing the ansatz Eq. (7) onto the positive symmetry sub-
space to produce a modified ansatz |ωp↑. See [37] Sec-
tion 4 of the Supplementary Material for details. Us-
ing |ωp↑ we calculate the long-range correlation function
εz
N/2 = 1

4 ↓ωp|Z0ZN/2|ωp↑, which serves as an order pa-
rameter for characterising the model’s two phases. Fig-
ure 5 shows the result this calculation for various system
sizes. While our ansatz-based result matches the exact
one closely for small N , it begins to deviate from it as
N increases. This is to be expected due to the error in
the ansatz’s prediction of the critical field strength. The
mean-field result, with its prediction of hmf

c
= 1, is also

shown.
Conclusion We have introduced a general method for

constructing ground-state ansatzes that are both analyti-
cally tractable and quantitatively accurate across a wide
range of system parameters. Our approach can be ap-
plied to any physical system that is amenable to a varia-
tional treatment in terms of tensor network states. More
broadly, the domain-specific language we introduced en-
ables arbitrary compute graph design, and a similar ap-
proach can be used for algorithm synthesis [43]. Al-
though we used evolutionary search, any gradient-free
method may be employed. The core of our approach
lies in the interplay between the domain-specific language
and the fitness criteria. The former enables fitness eval-

uation on small system sizes, which is computationally
e!cient and allows capturing system-size scaling. The
latter favours ansatzes with low variational and struc-
tural complexity while preserving accuracy. This results
in expressive ansatzes which tend to break the underly-
ing model’s symmetries, but due to their simple struc-
ture, these symmetries can be restored analytically. This
provides a systematic way to improve the ansatz and to
gain theoretical insights into the system.
Remarkably, by applying our method to both the LMG

and TFIM models, the algorithm autonomously con-
structs a mean-field treatment and extends it to incor-
porate correlations. This provided us with a simple and
interpretable structure. For the LMG model it yields
highly accurate results for finite systems, far surpassing
that of a mean-field treatment, and which become exact
in the thermodynamic limit. In the TFIM case, we ob-
tain accurate results across all system sizes and greatly
improve upon the mean-field treatment in the thermody-
namic limit.
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⇢in Z ⇢out

|0i Ry(✓1) Ry(✓2)

|0i

FIG. 10. Quantum circuit implementing the total non-
Markovian channel ⇤(T )

t for probability p(t).

depolarizing channel that is parameterized by some func-
tion p(t) (Refer to equation (25)). To do this we use the
circuit that simulates the depolarizing channel in [7].

⇢in Y Z ⇢out

|0i Ry(✓)

|0i Ry(✓)

|0i Ry(✓)

FIG. 11. Circuit implementing the depolarizing channel for a
single system qubit, for the probability p(t). The angle ✓ is
determined by the formula ✓(t) = 1

2arccos(1� 2p(t)).

Appendix C: Intuition for the choice of functions in
the non-Markovian channel addition

Choosing the functions q(t) and r(t) for the non-
Markovian channel addition was a non-trivial task. We
shall provide some intuition on how these funtctions were
choosen and the logic behind these choices. The calcula-
tions in section III B. give us the following conditions on
the functions q(t) and r(t):

0  q(t) < 1 and q(0) = 0,

0  r(t) < 1 and r(0) = 0. (C1)

Now from section III B. we have that for the channels
⇤(1)
t and ⇤(2)

t to be non-Markovian their respective decay
rates should be negative for some time interval. From
equation (28) we see that:

q̇(t0) < 0 for some t
0
� 0

ṙ(t00) < 0 for some t
00
� 0. (C2)

Equation (30) tells us that for the total channel ⇤(T )
t to

be Markovian we must have:

hq̇(t) + (1� h)ṙ(t) � 0 8t � 0, (C3)

where h 2 [0, 1]. Now setting h = 1
2 as in section III we

get the decay rate for the total channel as 1
2 (q̇(t) + ṙ(t)).

The intiution behind how to choose q, r is as follows. We
need to choose the functions q(t), r(t) such that when
q̇(t0) < 0 on some interval t0 2 [a, b], then ṙ(t0) > 0 for
t
0
2 [a, b] and vice versa. This ensures that the con-

vex mixture 1
2 (q̇(t) + ṙ(t)) � 0 for all times t and will

allow satisfy the conditions of non-Markovianity for the
individual channels i.e. equation (C2). We shall param-
eterize the functions q(t) and r(t) as follows:

q(t) = a(t) + b(t)

r(t) = a(t)� b(t), (C4)

and from equation (C1) we see that a(0) = b(0) = 0 as
well as,

b(t)  a(t) < 1� b(t). (C5)

Taking the derivatives of q and r we get,

q̇(t) = ȧ(t) + ḃ(t)

ṙ(t) = ȧ(t)� ḃ(t), (C6)

and taking their convex mixture yields,

1

2
(q̇(t) + ṙ(t)) = ȧ(t). (C7)

From equations (C5)-(C7) we have the conditions on
the functions a(t) and b(t). We note that since a(t) is
bounded between the functions b(t) and 1 � b(t), if we
choose b(t) to have the shape of a Plank distribution
where b(0) ⇡ 0 then a(t) just needs to satisfy a(0) ⇡ 0
and equation (C5). We choose a(t) to be the sum of two
sigmoid functions, so tht we can satisfy the conditions on
a(t). Now that we have the general shape of both a(t)
and b(t) by using translation, and scaling factors we can
transform the general shapes of these functions to satisfy
all the bounds in equations (C5)-(C7). Hence the choice
of the functions a(t) and b(t) in equation (32). This is the
intuition behind the design of the non-Markovian chan-
nels in the (nM+nM=M) experiment, a similar approach
can be followed for designing other experiments.
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