Spin-spin correlations in $\Lambda\bar{\Lambda}$ pairs production

A. Guskov 23.04.2025

Physics case

Spin correlations of $\Lambda\bar{\Lambda}$ pairs produced in pp and dd collisions can provide unique insight into the locality and entanglement effects in hadronization process.

STAR results

400M of unpolarized MB pp-events at \sqrt{s} =200 GeV (2012)

$\Lambda\Lambda$ -pairs at SPD

per 1 M of pp interactions	10 GeV	13 GeV	27 Ge
LaL events	5200	8800	2080
LaL pairs	5900	10000	2510
LL events	4300	5400	9600
LL pairs	4400	5600	1020
aLaL events	5	50	900
aLaL pairs	5	50	900

We reach the STAR statistics in 3 hours!

16 $\Lambda\Lambda$ pairs decaying into $p\pi$ per second at 13 GeV

General information

Observables: two-particle ($p\bar{p}$) angular correlation function (angle between p and \bar{p} momenta taken in the Λ and Λ rest frames, respectively **Physics being addressed:** possible quantum entanglement and nonlocality effects in hadronization processes **Competitiveness:** low-energy collisions at SPD are the optimal tool for the proposed studies **Complementarity:** production in e^+e^- , DIS and other hadroproduction experiments **Previous results:** STAR Actuality: actual

Importance: important for understanding hadronization process

Beam species: dd, pp **Collision** energy: 5 -13 GeV Luminosity: 10³¹ cm⁻² s⁻¹ (13 GeV) **Polarization: preferably** but not necessarily **Involved SPD subsystems:** MCT, Straw tracker **Optimal duration of data taking:** 1 month Minimal duration of data taking: 3 days

Total statistics: 60M pairs for dd collisions at 13 GeV Statistical accuracy: for - 10⁻³ Main sources of systematics: incorrectness of the setup description in MC, combinatorial background subtraction

Experimental requirements:

Expected performance:

