Studies of Δ^{++} resonance production and properties and searches for triply charged pentaquarks

Egor Zhulev (MSU) Leonid Gladilin (SINP MSU / DLNP JINR)

SPD Phase-I workshop, April 23, 2025

Outline:

Introduction

Modelling with Pythia 8 and SPDroot

Summary and Requirements at Phase-I

Interesting options for NICA :

Triply charged pentaquarks: (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ (uuuus) = $\Delta_s^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) K⁺

Pentaquarks with hidden strangeness: $(uuus\overline{s}) = P_s^{++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \varphi (\rightarrow K^+K^-)$ $(uuds\overline{s}) = P_s^+ \rightarrow p \varphi (\rightarrow K^+K^-)$ $(udds\overline{s}) = P_s^0 \rightarrow \Lambda^0 (\rightarrow p \pi^-) K_s^0 (\rightarrow \pi^+\pi^-)$

Check for (ududs) = θ^+ : $\theta^+ \rightarrow K^0_{sp}$, $\theta^+ \rightarrow K^+n$ (?)

and with charm at NICA II :

Charmed pentaquarks: (uuuu \overline{c}) = $\Delta_c^{++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) \overline{D}^0 ($\rightarrow K^+ \pi^-$) (uuud \overline{c}) = $\Delta_c^+ \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) D⁻ ($\rightarrow K^+ \pi^-\pi^-$) Search for (udud \overline{c}) = $\theta_c^{-0} \rightarrow \theta^+\pi^-$, pK⁰ π^- , D^{(*)-}p, ...

Pentaquarks with hidden charm (uuucc) = $P_c^{++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) J/ ψ ($\rightarrow \mu^+\mu^-$) (uudcc) = $P_c^+ \rightarrow p J/\psi$, Λ_c^+ ($\rightarrow K^- p \pi^+$) \overline{D}^0 ($\rightarrow K^+ \pi^-$) (uddcc) = $P_c^0 \rightarrow \Lambda_c^+$ ($\rightarrow K^- p \pi^+$) D⁻ ($\rightarrow K^+ \pi^-\pi^-$)

Can we register (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ at NICA?

Pythia 8.310, NNPDF40_lo_as_01180 pp at vs = 4, 10 and 27 GeV, SoftQCD:inelastic = on

Simplified $\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ model

m(Δ⁺⁺⁺) = 1450 MeV Γ(Δ⁺⁺⁺) = 150 MeV in comp. with Γ(Δ⁺⁺) ~ 117 MeV

produced in decays of heavy (~2 GeV) Δ -like states

 $\sigma(\Delta^{+++})^{27 \text{ GeV}} = 3.9 \text{ a.u.}$

 $\sigma(\Delta^{+++})^{10 \text{ GeV}} = 2.9 \text{ a.u.}$

 $\sigma(\Delta^{+++})^{4 \text{ GeV}} = 1.0 \text{ a.u.}$

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ tracks' acceptances

For all 3 tracks	η _{track} < 2.5	η _{track} < 2.0	η _{track} < 1.5	
	√s = 4 / 10 / 27 GeV	√s = 4 / 10 / 27 GeV	√s = 4 / 10 / 27 GeV	
p _{T,track} > 100 MeV	54% / 51% / 31%	52% / 40% / 20%	45% / 25% / 12%	
p _{T,track} > 150 MeV	22% / 25% / 16%	22% / 21% / 11%	21% / 14% / 7%	
p _{T,track} > 200 MeV	6% / 9% / 6%	6% / 8% / 4%	6% / 5% / 3%	

for further plots: $p_{T,track}$ > 150 MeV && $|\eta_{track}|$ < 2.5

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$, reconstructed mass

combine proton with two positively charged pions require ($1.14 < m(p \pi_1^+) < 1.32$) || ($1.14 < m(p \pi_2^+) < 1.32$) (~97% eff.)

data-driven background shape estimation is needed

$\Delta^{++} (\rightarrow p \pi^+)$ with Pythia8

Blue - Δ^{++} signal distribution

Red - $m(p\pi^+)$ distr. - $m(p\pi^-)$ distr. (normalized above signal)

Information on the Δ resonances in PDG is based on the partial wave analysis of the πN and γN scatterings.

SPD allows one to study the Δ^{++} resonance production and properties in final states of the pp collisions at relatively low energies.

Δ^{++} and Δ^{+++} in SPD with SPDroot

Summary

 Δ^{++} resonance can be studied and triply charged pentaquarks can be searched already at Phase-I of SPD@NICA

Requirements at Phase-I:

Beam species: pp Collision energy: 3,5 -13 GeV Luminosity: 10³⁰⁻³¹ cm⁻² s⁻¹ Polarization: not necessarily Involved SPD subsystems: MCT, Straw tracker Optimal duration of data taking: 6 months Minimal duration of data taking: 2 months

Simulation information used: Pythia8 MC, simplified pentaquark model, SPDroot

Backup

Brief pentaquarks' story, θ^+ :

 $\Theta(1540)^+$

Diakonov, Petrov, Polyakov (hep-ph/9703373, Z.Phys. A359, 305 (1997) Exotic Anti-Decuplet of Baryons: Prediction from Chiral Solitons

2003: seen in exotic decay $(\theta^+ \rightarrow K^+n)$ by LEPS, CLAS, SAPHIR non-exotic decay $(\theta^+ \rightarrow K^0{}_{S}p)$ seen by many exp's Unseen by many exp's including CLAS with increased statistics Current status of θ^+ : removed from PDG after 2006 reputation below plinth

Attempts to explain differences between exp's:

Dementiev R.K., Phys. Atom. Nucl. 76 (2015) 301 On the mechanism of O⁺-pentaquark production

phase-shift effects

Azimov, Goeke, Starkowsky, Phys.Rev.D76 (2007) 074013 An explanation why the Theta+ is seen in some experiments and not in others

short-term fluctuations of initial hadrons

"studies of the hadron remnants in hard processes"

at NICA?

Brief pentaquarks' story, Θ_{c}^{0} : $\Theta_{c}^{0} = (\mathbf{ud})^{2} \overline{\mathbf{c}}$ Jaffe-Wilczek (hep-ph/0307341): m(Θ_{c}^{0}) = 2710 MeV Karliner-Lipkin (hep-ph/0307343): m(Θ_{c}^{0}) = 2985±50 MeV $\Gamma(\Theta_{c}^{0}) \sim 21$ MeV

2004: seen in the decay $(\theta_c^0 \rightarrow D^{*-}p)$ with $m(\Theta_c^0) = 3099$ MeV by only H1 @ HERA Unseen by many exp's including ZEUS @ HERA and H1 with increased statistics

Can be searched again in various decays: $\theta_c^0 \rightarrow \theta^+ \pi^-$, pK⁰ π^- , D^{(*)-}p, ...

at NICA?

Brief pentaquarks' story, pentaquarks with hidden charm :

Partially confirmed by D0, ATLAS

Not seen by GLueX \rightarrow limits on branchings of decays to (J/ ψ p)

Current status in PDG 2023:

$$(40)^+ \ \ P_c(4457)$$

 $P_c(4380)^+$

Strange pentaquarks candidates are not yet in PDG

Most popular description – molecular states

Many phenomenological papers on pentaquarks with hidden charm, beauty and strangeness

at NICA?

Can we register (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ at NICA?

Pythia 8.310, NNPDF40_lo_as_01180

pp at vs = 4, 10, 27 GeV, SoftQCD:inelastic = on

Simplified $\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ model

Gerasyuta, Kochkin (hep-ph/0310225, Int .J. Mod. Phys. E 15 (2006) 71-86 Relativistic five-quark equations and u, d- pentaquark spectroscopy

Table II. Low-lying Δ - isobar pentaquark masses and contributions of subamplitudes $+ \mu$

BM, $D\overline{q}D$, Mqqq and $Dqq\overline{q}$ to pentaquark amplitude in percentage of probability (diquark

with
$$J^{P} = 1^{+}$$
).

Fig. №	Meson J^{PC}	J^{P}	Mass, MeV	A_1	A_2	A_3	A_4
				(BM)	$(D\overline{q}D)$	(Mqqq)	$(Dqq\overline{q})$
4	0++	$\frac{1}{2}^+, \frac{3}{2}^+$	1485(1600)	31.60	6.42	33.93	28.05
4	1++	$\frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+$	1550(1750)	28.08	8.88	42.09	20.95
4	2++	$\frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+$	1736(1920)	24.53	13.25	44.07	18.15
5	2++	$\frac{7}{2}^{+}$	1950(1950)	24.99	-	75.01	-
5	0-+	$\frac{1}{2}^{-}$	1453(1620)	38.13	-	61.87	-
5	1	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	1920(1940)	25.97	-	74.03	-

Parameters of model: quark mass m = 410 MeV, cut-off parameter $\Lambda = 20,1$; gluon constant g = 0.417. Experimental mass values of Δ - isobar pentaquarks are given in parentheses [12].

(uuuuuu)

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ kinematics

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi_1^{+}) \pi_2^{+}$, proton identification?

proton is typically fastest track can be used in case of no PID

for further plots, proton detector identification is assumed