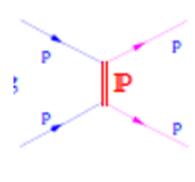
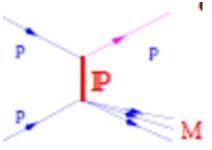
Studies of elastic and diffractive pp scatterings with SPD detector at NICA collider

David Maksimov (MSU)
Leonid Gladilin (SINP MSU / DLNP JINR)

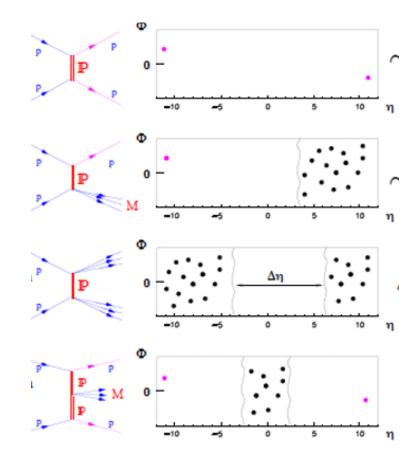

SPD Phase-I workshop, April 23, 2025


Outline:

Introduction

Modelling with Pythia 8

Summary and Requirements at Phase-I



How identify the elastic and diffractive scatterings?

1. Measuring the scattered proton(s)

At high-energy colliders the scattered protons are very forward and can be measured only with Roman pots.

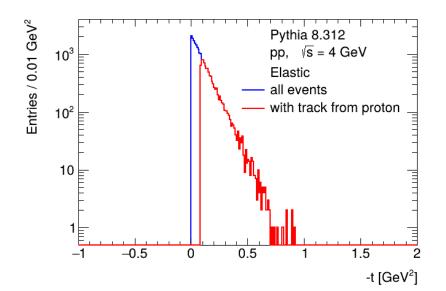
2. Selecting events with Large Rapidity Gap (LRG) between the expected direction of one proton (system) and another proton (system)

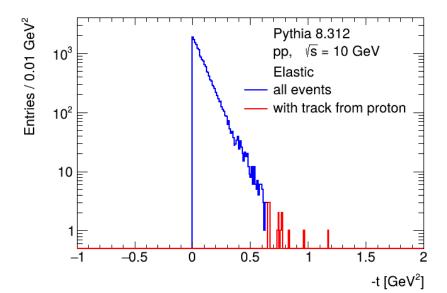
Can we identify the elastic and diffractive events with SPD@NICA by measuring the scattered proton(s) in the main detector?

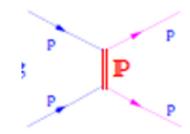
Modelling with Pythia 8

Pythia 8.312

pp at $\sqrt{s} = 4$ GeV and 10 GeV, SoftQCD:all = on

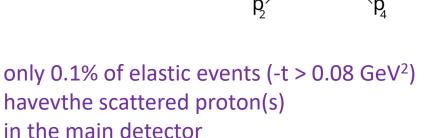

٧s	Total x- section	Elastic	Inelastic
4 GeV	43.1 mb	22%	88%
10 GeV	38.5 mb	18%	82%
		P	


Fractions of inelastic events:


٧s	Non-diffraction	Single diffraction	Double diffraction
4 GeV	90.8%	8.8%	0.4%
10 GeV	80.8%	16.5%	2.7%
		p p	P

Modelling with Pythia 8

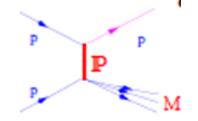
pp at \sqrt{s} = 4 GeV and 10 GeV, Elastic

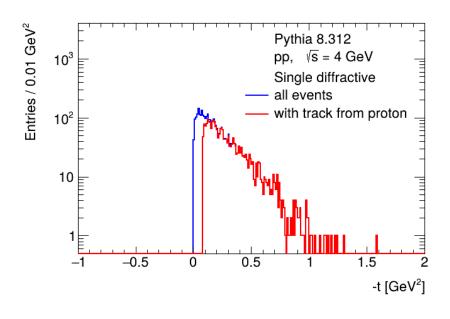


~43% of elastic events (-t > 0.08 GeV²) have the scattered proton(s) in the main detector (p_T >150 MeV, $|\eta|$ <2.5)

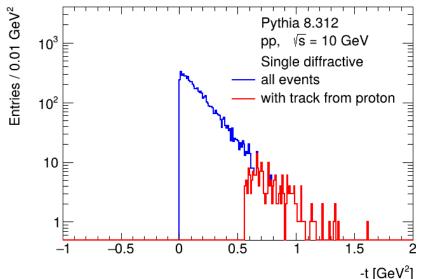
$$t = (p_1 - p_3)^2$$

 $(p_T > 150 \text{ MeV}, |\eta| < 2.5)$

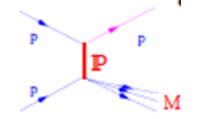



Forward detectors are needed for $\sqrt{s} >= 10 \text{ GeV}$

For detailed discussion see report from Adel Terkulov (LPI) on 29.10.24 https://indico.jinr.ru/event/4985/


Modelling with Pythia 8

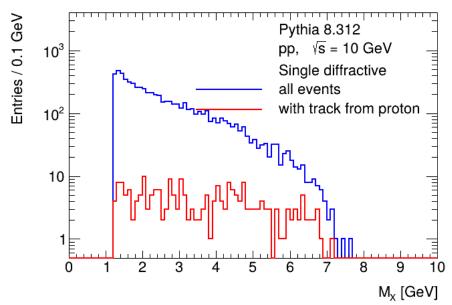
pp at $\sqrt{s} = 4$ GeV and 10 GeV, Single Diffractive


~68% of single-diffractive events (-t > 0.08 GeV²) have the scattered proton in the main detector (p_T >150 MeV, $|\eta|$ <2.5)



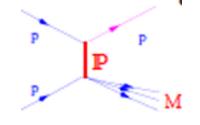
~3.4% of single-diffractive events (-t > 0.55 GeV²) have the scattered proton in the main detector (p_T >150 MeV, $|\eta|$ <2.5)

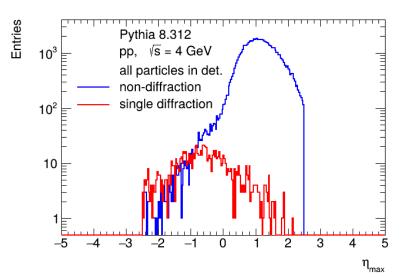
Large Rapidity Gap (LRG) method should be used in addition

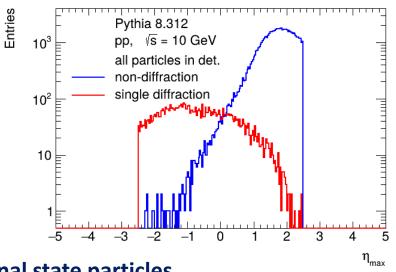

Modelling with Pythia 8, Single Diffraction

M_X reconstructed using the scattered proton

Large acceptance for all M_x values

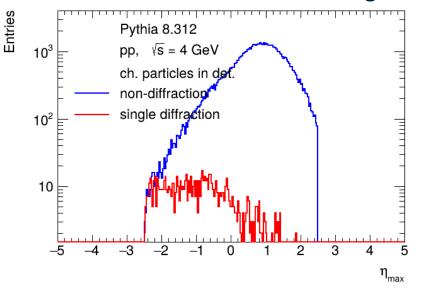


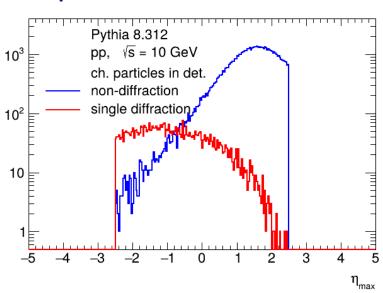

Sensitivity to all M_x values


Modelling with Pythia 8, LRG metod

η_{max} using particles with $p_T>150$ MeV and $|\eta|<2.5$

all final state particles





charged final state particles

Entries

Summary

Phase-I of SPD@NICA offers an unique opportunity to measure the elastic and diffractive events with the scattered protons in the main detector

LRG method can/should be used in addition

Requirements at Phase-I:

Beam species: pp (pd)

Collision energy: 3,5 -13 GeV (a few values would be beneficial)

Luminosity: 10³⁰⁻³¹ cm⁻² s⁻¹

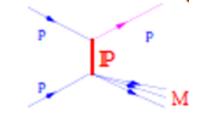
Polarization: interesting but not necessarily

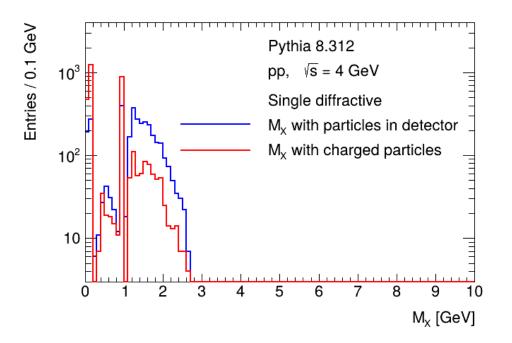
Involved SPD subsystems: MCT, Straw tracker, (Range system?)

Optimal duration of data taking: 2 months

Minimal duration of data taking: 3 weeks

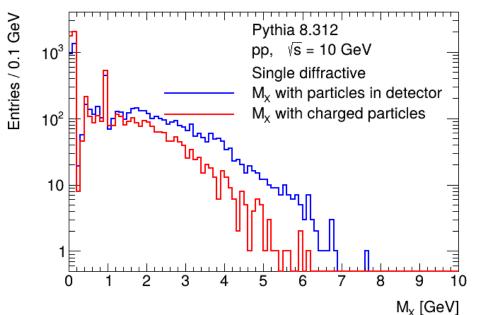
Simulation information used: Pythia8 MC


Backup


Introduction

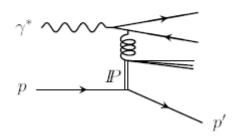
99.9999% of LHC events are QCD $\sigma_{\rm tot} = \sigma_{\rm el} + \sigma_{\rm sd} + \sigma_{\rm dd} + \sigma_{\rm cd} + \sigma_{\rm nd}$ $\sim 100 \text{ mb}$ (note: $\sim 1/\Lambda_{\rm OCD}^2$) $\sim 20 \text{ mb}$ Elastic Scattering el Single Diffraction $\sim 15 \text{ mb}$ (SD) sd Double Diffraction $\sim 10 \text{ mb}$ (DD) dd Central Diffraction $\sim 1 \text{ mb}$ (CD) cd

Pomeron – colorless object with quantum numbers of vacuum

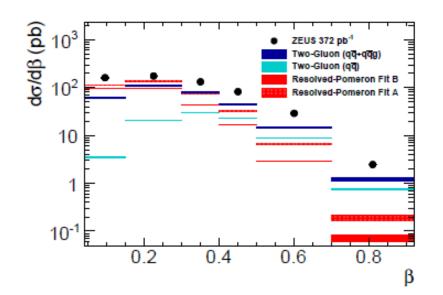

Modelling with Pythia 8, Single Diffraction

 M_X reconstructed using particles of the M_X system in the main detector (p_T >150 MeV, $|\eta|$ <2.5)

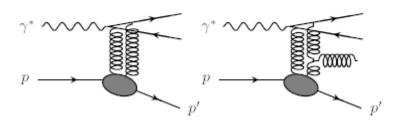
Calo/RS information should be helpful



Better statistics w.r.t. the scattered proton method

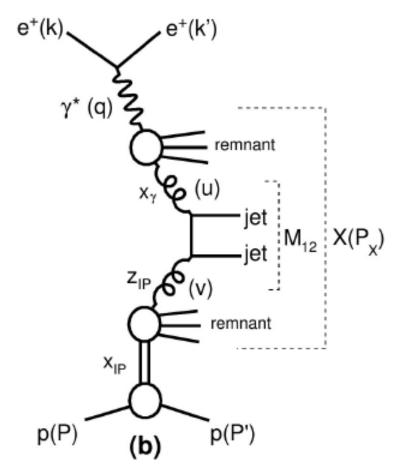

LRG method using both tracking and Calo/RS information should be helpful

Exclusive Dijets in Diffractive DIS


Resolved-Pomeron model

Prediction based on diffractive gluon density obtained from fits (H1 2006 fits A and B) to H1 data

Two-Gluon-Exchange model

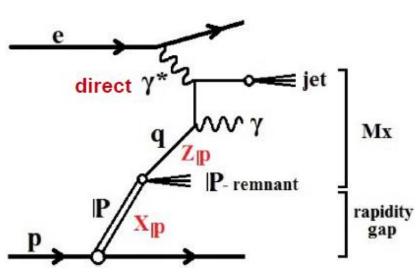

Prediction based on GRV parameterisation of the gluon density

The $q\bar{q}g$ final state is sensitive to the parton-level cut $p_{T,cut}$

 $\beta = x/x_{IP}$ - fraction of Pomeron momentum "seen" by the photon

Diffractive Dijets in DIS and Photoproduction

JHEP 05 (2015) 056 arXiv:1502.01683

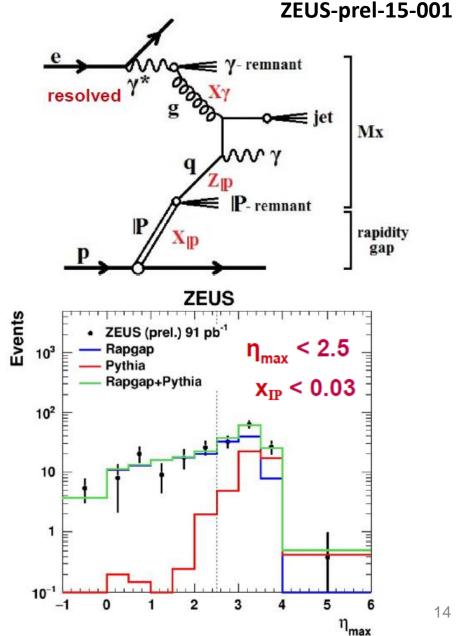


Measure scattered proton in VFPS (Very Forward Spectrometer)

- •VFPS is 220m from interatction point
- Complementary method to LRG method

PHP	DIS			
$Q^2 < 2 \mathrm{GeV^2}$	$4 \mathrm{GeV^2} < Q^2 < 80 \mathrm{GeV^2}$			
Common Cuts				
0.2 < y < 0.7				
$E_T^{* ext{jet 1}} > 5.5 \mathrm{GeV}$ -1 < $\eta^{ ext{jet 1}} < 2.5$	$E_T^{*\text{jet2}} > 4.0\text{GeV}$			
$-1 < \eta^{ m jet1} < 2.5$	$-1 < \eta^{ m jet2} < 2.5$			
$ t < 0.6 {\rm GeV^2}$	$0.010 < x_{I\!\!P} < 0.024$			
$z_{I\!\!P} < 0.8$				

Prompt photons in diffractive photoproduction



$$x_{IP} = \Sigma(E + p_z)_{all EFOs} / 2 E_p$$

x_{IP} = fraction of proton energy taken by pomeron.

Z_{IP} = fraction of pomeron energy taken in scatter.

η_{max} = maximum value of
pseudorapidity of outgoing
particles in scatter
(Ignore forward proton.)

