Исследование направленного потока протонов в ядро-ядерных столкновениях при энергиях E_{kin} =1.2 — 4 А ГэВ

По материалам кандидатской диссертации

Мамаев Михаил Валерьевич (ЛФВЭ ОИЯИ, НИЯУ МИФИ) Научный руководитель: Тараненко Аркадий Владимирович (PhD)

Общелабораторный семинар ЛФВЭ 11/04/2025

Текст диссертации и автореферата

Диссертация:

https://github.com/mam-mih-val/phd_thesis/blob/master/dissertation.pdf

Автореферат:

https://github.com/mam-mih-val/phd_thesis/blob/master/synopsis.pdf

Email: mam.mih.val@gmail.com

Цель работы

Экспериментальное исследование коллективной анизотропии протонов в ядроядерных столкновениях Au+Au и Ag+Ag при энергиях E_{kin}=1,23-1,58A ГэВ (√s_{NN}=2,4-2,55 ГэВ) в эксперименте HADES (GSI), а также изучение возможности проведения измерений коллективной анизотропии в эксперименте BM@N (NICA).

План презентации

- 1. Введение
- 2. Анизотропные коллективные потоки в столкновениях релятивистских тяжелых ионов и их чувствительность к свойствам сжатой барионной материи
- 3. Современные методы измерения анизотропных потоков в экспериментах с фиксированной мишенью
- 4. Измерение направленного потока протонов в столкновениях Au+Au и Ag+Ag в эксперименте HADES (GSI)
- 5. Исследование эффективности установки BM@N (NICA) для измерения анизотропных потоков протонов
- Предварительные результаты измерения потока протонов в столкновениях Xe+CsI при E_{kin}=3,8А ГэВ на установке BM@N

Столкновения релятивистских тяжелых ионов

В 2005 году 4 эксперимента (STAR, PHENIX, BRAHMS, PHOBOS) на коллайдере RHIC объявили об открытии кварк-глюонной материи (КГМ) со свойствами идеальной жидкости в столкновениях Au+Au при энергии √s_{NN}=200 ГэВ В 2010 году эксперименты (ALICE, ATLAS, CMS) на LHC подтвердили наблюдение КГМ в столкновениях Pb+Pb при энергии √s_{NN}=2.76 ТэВ

Плавный переход (кроссовер) из адронных в кварковые степени свободы при нулевой барионной плотности

Эксперименты по изучению сжатой барионной материи

Эксперименты в области высоких барионных плотностей:

Существующие:

ВМ@N/NICA (ОИЯИ) — 2.4-3.3 ГэВ HADES/SIS18 (Германия) — 2.4-2.55 ГэВ STAR/RHIC (США) — 3-200 ГэВ

<u>Будущие:</u>

МРD/NICA (ОИЯИ) — 4-11 ГэВ (2025) CEE/HIAF (Китай) — 2.1-4.4 ГэВ (2026) CBM/FAIR (Германия) 2.4-4.9 ГэВ (2029)

Method	$\mu_c \; ({ m MeV})$	$T_c \; (MeV)$
Holography + Bayesian	560 - 625	101 - 108
FRG/DSE	495 - 654	108 - 119
Lee-Yang edge singularities	500 - 600	100 - 105
Lattice QCD	$\mu_c/T_c > 3$	F. Karsch et al.
Summary	495 - 654	100 - 119

 $(\mu_{c}, T_{c}) = (495 - 654, 100 - 119) \text{ MeV}$ 3.5 < $\sqrt{s_{NN}} < 4.9 \text{ GeV}$

Сжатая барионная материя в лаборатории и астрофизике J.Subatomic Part.Cosmol. 3 (2025) 10015

 $\sqrt{s_{NN}} = 2.4 \text{ GeV}$ — MF --- Cascade $\sqrt{s_{NN}} = 3.0 \text{ GeV}$ HIC (sym) 100 FS $\rho_{\rm th}/\rho_0$ V₃^{1/3} [fm] =3, 4, 5, 610 HIC (asym) $\sqrt{s_{NN}} = 7.7 \text{ GeV}$ $\sqrt{s_{NN}} = 4.9 \text{ GeV}$ NS mergers -NS crust 5 V₃^{1/3} [fm] nuclear properties 0. 5 10 15 5 10 15 0 0 neutron stars (NS) $t \, [\text{fm}/c]$ $t \, [\text{fm}/c]$ 3 4 5 0 2

density n_B/n_0

temperature [MeV]

Коллективные анизотропные потоки 1989-2000

Величина анизотропных потоков определяется коэффициентами ряда Фурье

$$v_n = \left\langle \cos n(\phi - \Psi_{RP}) \right\rangle$$

*u*₁ — направленный поток, *u*₂ — эллиптический, *u*₃ — треугольный

Анизотропные потоки на RHIC и LHC

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

- $\frac{d^2 N}{d\varphi d\Psi_{RP}} = \frac{N}{2\pi} (1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi \Psi_{RP}))$
- Эксцентриситет области перекрытия ядер ^с_n (и сопутствующие ему флуктуации) вызывают азимутальную анизотропию в пространстве импульсов v_n с вязкими модуляциями η/s
- Для v₂ и v₃: v_n~ k_nε_n
- Анизотропные потоки на RHIC и LHC согласуются с гидродинамическими расчетами с η/s близкими к предсказанному минимуму η/s>1/4π

Непотоковые корреляции

Существуют корреляции между частицами, не связанные с плоскостью реакции. Эти корреляции называются «непотоковыми»

Среди источников корреляций, не связанных с потоком:

- сохранение полного (поперечного) импульса при столкновении;
- распады резонансов в результате слабого взаимодействия
- корреляции ближнего действия (фемтоскопия, распад фрагментов ядер)

Эффекты детектора также могут вносить коррелированную ошибку в измерения потока:

- Разделение траектории одной частицы в результате реконструкции
- Слияние траекторий двух частиц в результате реконструкции
- Сигналы от пролёта одной и той же частицы в соседних модулях сегментированных детекторов

Как правило "непотоковые" корреляции оказывают существенное влияние только на частицы с близкими импульсами, их можно также подавить, увеличив интервал быстроты между частицами.

Анизотропный поток в столкновениях тяжелых ионов при высокой барионной плотности

При энергиях HADES и BM@N на анизотропный поток влияют:

- 1. Время расширения области перекрытия:
- 2. Время пролета сталкивающихся ядер:

$$t_{exp} = R/c_s, c_s = \sqrt{dp/d\varepsilon}$$

 $t_{pass} = 2R/\gamma_{
m beam} eta_{
m beam}$ 10

Уравнение состояние (EoS) сжатой барионной материи

EOS описывает отношение между плотностью (n_B), давлением (P), температурой (T), энергией (E), и изоспиновой асимметрии (n_b-n_n)/n_B

 v_n при энергиях NUCLOTRON-NICA

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

- Результаты старвнения *v* с теоретическими предсказанимями неоднозначны:
 - \circ v_1 предполагает K_{nm}~210 MeV and v_2 предполагает K_{nm}~ 300 MeV
- Необходимы дополнительные измерения, чтобы уточнить значение К

Необходимость новых измерений v_1

Различия экспериментальных значений dv₁/dy между E895 и STAR требуют новых измерений чтобы устранить неоднозначность

Задачи, которые необходимо решить

- 1. Усовершенствовать и применить на практике метод измерения коллективных потоков в экспериментах с фиксированной мишенью с учетом неоднородности азимутального аксептанса установки.
- 2. Разработать метод учета корреляций, не связанных с коллективным движением рожденных частиц (непотоковых корреляций), и изучить их влияние на результаты измерения коллективных потоков.
- 3. Исследовать характеристики направленного потока v_1 протонов в столкновениях Au+Au и Ag+Ag при энергиях E_{kin} =1,23-1,58A ГэВ ($\sqrt{s_{NN}}$ =2,4-2,55 ГэВ) в эксперименте HADES.
- 4. Произвести сравнение полученных результатов измерения *v*₁ протонов с теоретическими моделями и данными других экспериментов.
- Исследовать влияние спектаторов налетающего ядра на формирование v₁ протонов с помощью проверки законов масштабирования коллективных потоков с энергией и геометрией столкновения.
- Изучить возможности измерения коллективных потоков протонов в эксперименте BM@N (NICA).

Векторы потока u_n и Q_n

Из импульса каждой частицы определяется единичный вектор u_n:

 $\vec{u}_n = (\cos n\varphi, \sin n\varphi)$

где ф — азимутальный угол импульса

Сумма по группе частиц в одном событии даёт оценку угла плоскости реакции в событии:

$$\vec{Q}_n = \frac{\sum_{k=1}^M w_k u_n^k}{C} = \frac{|Q|}{C} (\cos n \Psi_n^{EP} \sin n \Psi_n^{EP})$$

Ψ_n^{EP} — угол плоскости симметрии (оценка угла плоскости реакции)

- Плоскость симметрии определятся при помощи спектаторов, которые отклоняются в плоскость реакции
 - Большое разделение по быстроте позволят минимизировать непотоковые корреляции

Влияние азимутального аксептанса на v_n

Коррекция азимутальной неоднородности аксептанса

Оригинальный программный код разработанный для коллайдерных экспериментов был адаптирован для экспериментов с фиксированной мишенью: https://github.com/mam-mih-val/qntools_macros

Метод плоскости события

$$\Psi_n^{EP} = \arctan \frac{Q_n^y}{Q_n^x} \quad v_n = \frac{\langle \cos n(\phi - \Psi_n^{EP}) \rangle}{R_n}$$
$$\langle v_n \rangle < v_n < \sqrt{\langle v_n^2 \rangle}$$

Phys. Rev. C. - 2001. - T. 64. - C. 054901

$$R_n = \sqrt{\langle \cos n(\Psi_n^A - \Psi_n^B) \rangle}$$

Ψ_n^A и Ψ_n^B — оценка по двум
 группам частиц (часто частицы
 разделяются в группы случайным
 образом)

Метод подвержен вкладу непотоковых корреляций

Метод скалярного произведения

Метод скалярного произведения:

$$v_n = \frac{\langle \vec{u}_n \vec{Q}_n \rangle}{R_n}$$
$$v_n \to \sqrt{\langle v_n^2 \rangle}$$

Phys. Rev. C. - 2001. - T. 64. - C. 054901

Метод трех подсобытий:

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Метод даёт 3 оценки v_n, что позволяет оценивать вклад непотоковых корреляций

Эксперимент HADES на ускорителе SIS-18 (ГСИ, Дармштадт)

Векторы потока

W3: 2.68 < n < 3.35

Ошибка из-за азимутального неоднородности акцетанса < 2%

Методы вычисления v_n

Метод скалярного произведения (SP) $v_1=rac{\langle u_1Q_1^{F1}
angle}{R_1^{F1}}$ $v_2=rac{\langle u_2Q_1^{F1}Q_1^{F3}
angle}{R_1^{F1}R_1^{F3}}$

Где R₁ — разрешение плоскости симметрии

 $R_1^{F1} = \langle \cos(\Psi_1^{F1} - \Psi_1^{RP})
angle$

Обозначение "F2(F1,F3)" раскрывается как R₁ вычисленный следующим образом:

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

корреляций < 5%

Сравнение методов измерения v₁ в эксперименте HADES

Систематическая ошибка из-за метода измерениях v₁ менее 5% в среднецентральных столкновениях Au+Au

<u>Nuclei</u>, 2022, 53(2), pp. 277–281 M.Mamaev et al.<u>Journal of Physics: CS</u>, 2020, 1690(1), 012122 23

Коллективные потоки в столкновениях Au+Au при E_{kin}=1.23*A* ГэВ

Первые детальные измерения коллективных потоков v_n (до 6 гармоники) в столкновениях Au+Au при энергии 1.23 АГэВ ($\sqrt{s_{NN}}$ = 2.4 ГэВ) Вклад автора в работу: сравнение методов измерения v_n и оценка вклада непотоковых корреляций Eur. Phys. J. A (2023) 59:80 https://doi.org/10.1140/epja/s10050-023-00936-6 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4 \text{ GeV}$

HADES collaboration

J. Adamczewski-Musch⁵, O. Arnold^{9,10}, C. Behnke⁸, A. Belounnas¹³, J. C. Berger-Chen^{9,10}, A. Blanco², C. Blume⁸, M. Böhmer¹⁰, P. Bordalo², L. Chlad¹⁴, I. Ciepal³, C. Deveaux¹¹, J. Dreyer⁷, E. Epple^{9,10}, L. Fabbietti^{9,10}, P. Filip¹, P. Fonte^{2,b}, C. Franco², J. Friese¹⁰, I. Fröhlich⁸, T. Galatyuk^{5,6}, J. A. Garzón¹⁵, R. Gernhäuser¹⁰, R. Greifenhagen^{7,c†}, M. Gumberidze^{5,6}, S. Harabasz^{4,6}, T. Heinz⁵, T. Hennino¹³, S. Hlavac¹, C. Höhne^{5,11}, R. Holzmann⁵, B. Kämpfer^{7,c}, B. Kardan⁸, I. Koenig⁵, W. Koenig⁵, M. Kohls⁸, B. W. Kolb⁵, G. Korcyl⁴, G. Kornakov⁶, F. Kornas⁶, R. Kotte⁷, A. Kugler¹⁴, T. Kunz¹⁰, R. Lalik⁴, K. Lapidus^{9,10}, L. Lopes², M. Lorenz⁸, T. Mahmoud¹¹, L. Maier¹⁰, A. Malige⁴, A. Mangiarotti², J. Markert⁵, T. Matulewicz¹⁶, S. Maurus¹⁰, V. Metag¹¹, J. Michel⁸, D. M. Mihaylov^{9,10}, C. Müntz⁸, R. Münzer^{9,10}, L. Naumann⁷, K. Nowakowski⁴, Y. Parpottas¹⁸, V. Pechenov⁵, O. Pechenova⁵, K. Piasecki¹⁶, J. Pietraszko⁵, W. Przygoda⁴, K. Pysz³, S. Ramos², B. Ramstein¹³, N. Rathod⁴, P. Rodriguez-Ramos¹⁴, P. Rosier¹³, A. Rost⁶, A. Rustamov⁵, P. Salabura⁴, T. Scheib⁸, H. Schuldes⁸, E. Schwab⁵, F. Scozzi^{6,13}, F. Seck⁶, P. Sellheim⁸, I. Selyuzhenkov⁵, J. Siebenson¹⁰, L. Silva², U. Singh⁴, J. Smyrski⁴, Yu. G. Sobolev¹⁴, S. Spataro¹⁷, S. Spies⁸, H. Ströbele⁸, J. Stroth^{5,8}, C. Sturm⁵, O. Svoboda¹⁴, M. Szala⁸, P. Tlusty¹⁴, M. Traxler⁵, H. Tsertos¹², V. Wagner¹⁴, C. Wendisch⁵, M. G. Wiebusch⁵, J. Wirth^{9,10}, D. Wójcik¹⁶, P. Zumbruch⁵ The main contribution to the global systematic uncertainty arises from the event plane resolution. This is mainly caused by so-called "non-flow" correlations which can distort the event plane determination. The magnitude of these systematic effects is evaluated using the three-sub-event method, i.e. by determining the event plane resolution for combinations of different subevents separated in rapidity. It is found to be below 5 % for the centralities 10 - 40 % [36].

- 35. R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, *GEANT Detector Description and Simulation Tool* (1994).
- 36. M. Mamaev, O. Golosov, and I. Selyuzhenkov (HADES), Phys. Part. Nucl. 53, 277 (2022).
- 37. A. Andronic *et al.* (FOPI), Phys. Rev. C64, 041604 (2001).

v₁ протонов в столкновениях Au+Au и Ag+Ag

Mamaev M. Physics of Particles and Nuclei Letters. — 2024. — T. 21, № 4. — C. 661—663. Mamaev M. Physics of Particles and Nuclei. — 2024. — T. 55, № 4. — C. 832—835.

- Наблюдается похожая зависимость v₁ (dv₁/dy) протонов от быстроты (y_{cm}), поперечного импульса (p_T) и центральности для столкновений Ag+Ag и Au+Au при E_{kin}=1.23A ГэВ
- Модель JAM-MF (с импульсно зависимым среднем полем) довольно хорошо описывает зависимость v₁ от быстроты

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622-637

Сравнение результатов с существующими мировыми данными

Измеренные значения dv₁/dy протонов хорошо согласуются с данными других экспериментов 27

Масштабирование dv_1/dy с энергией и размером системы

Более длинное время пролета Более короткое время пролета

Во время пролета двух ядер t_{pass} :

- Протоны в области перекрытия смешиваются с холодной спектаторной материей

dv₁/dy|_{y=0} пропорционален времени пролета t_{pass}=2R/sinh(y_{beam}) ⇔ ожидается масштабирование с y_{beam}

Масштабирование dv_1/dy с энергией и размером системы

Более длинное время пролета Более короткое время пролета

Во время пролета двух ядер:

- Протоны в области перекрытия смешиваются с холодной спектаторной материей

v₁ отражает изначальную асимметрию области перекрытия ⇔ ожидается похожий v₁ для одного относительного прицельного параметра b/R

$$b_L/R_L = b_s/R_s$$

JAM-MF: масштабирование v_1 с энергией и размером системы

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622–637

Наблюдается схожее масштабирование в модели JAM-MF

Масштабирование v₁ с энергией и геометрией столкновения

Mamaev M. Physics of Particles and Nuclei Letters. — 2024. — T. 21, № 4. — C. 661—663. Mamaev M. Physics of Particles and Nuclei. — 2024. — T. 55, № 4. — C. 832—835.

- Масштабированный v₁ не зависит от энергии столкновения и размера системы
 - Форма зависимости v₁ от p_т не меняется с энергией и размером системы

Масштабирование dv₁/dy с энергией и размером системы

Mamaev M. Physics of Particles and Nuclei Letters. — 2024. — T. 21, № 4. — C. 661—663. Mamaev M. Physics of Particles and Nuclei. — 2024. — T. 55, № 4. — C. 832—835.

 После коррекции на время пролета двух ядер (y_{beam}) dv₁/dy' не зависит от размера сталкиваемых ядер и энергии столкновения и зависит только от относительное прицельного параметра (/ A^{1/3})

Результаты анализа анизотропных потоков на HADES

- Разработан метод учета корреляций, не связанных с коллективным движением рожденных частиц (непотоковых корреляций), и изучено их влияние на результаты измерения коллективных потоков в области энергий 1,2-4А ГэВ.
- Впервые получены зависимости v₁ протонов от быстроты и поперечного импульса, а также наклона dv₁/dy_{cm}|_{ycm=0} в области средних быстрот в столкновениях Au+Au при энергии E_{kin}=1,23A ГэВ и Ag+Ag при энергиях E_{kin}=1,23A и E_{kin}=1,58A ГэВ в эксперименте HADES. Полученные новые результаты измерения v₁ протонов современными методами анализа являются принципиально важными для проверки и дальнейшего развития теоретических моделей ядро-ядерных столкновений.
- Обнаружено масштабирование направленного потока протонов с~временем пролета ядер t_{pass} и геометрией столкновения в области энергий E_{kin}=1,23A и E_{kin}=1,58A ГэВ, что позволяет оценить влияние спектаторов налетающего ядра на формирование направленного потока протонов.

Эксперимент BM@N ("Барионная Материя на Нуклотроне")

CSC 1x1 m² (10)

TOF 400 (11)

TOF 700 (13)

ScWall (14)

Small GEM (16)

FD (15)

FQH (19)

Xe+CsI столкновения при энергии Е_{кіп}=3.8 А ГэВ, 10 млн модельных (JAM, DCM-QGSM-SMM) событий + GEANT4 + полная реконструкция

Nucl.Instrum.Meth.A 1065 (2024)

Трековая система внутри магнита

34

Плоскость симметрии определяется азимутальной асимметрией распределения энерговыделения в FHCal

Q-вектора из FHCal и треков заряженных частиц

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622-637

3 вектора из FHCal: F1: 4.4 < η < 5.5; w=E_{kin} F2: 3.9 < η < 4.4; w=E_{kin} F3: 3.1 < η < 3.9; w=E_{kin} Дополнительные подсобытия из рожденных частиц:

Tp: p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff **Tπ:** π -; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff **T-:** all negative; 1.0<η<2.0; 0.1 < p_T < 0.5 GeV/c;

35

Скалярное произведение: зависимость разрешения плоскости событий R_1 от центральности (модельные данные Xe+Cs(I) E_{kin} = 3.8 АГэВ)

Mamaev M. Phys. Part. Nucl. Lett. — 2023. — T. 20, № 5. — C. 1205—1208.

Использование дополнительных подсобытий из треков заряженных частиц даёт согласованные значения для разрешения плоскости симметрии R₁

Оценка эффективности эксперимента BM@N для измерения направленного и эллиптического потоков в столкновениях Xe+CsI

Хорошее согласие между реконструированными и модельными значениями V_n

Скалярное произведение: зависимость разрешения плоскости событий R_1 от центральности (экспериментальные данные BM@N: Xe+Cs(I) E_{kin} = 3.8 АГэВ)

Все оценки разрешения плоскости событий R_1 находятся в хорошем согласии друг с другом

Зависимость v_1 протонов от y_{cm} и p_T в экспериментальных данных Xe+CsI E_{kin} =3.8A ГэВ

Mamaev M. Int. J. Mod. Phys. E. — 2024. — T. 33, №11. — C. 2441009.

dv₁/dy протонов в экспериментальных данных Xe+CsI E_{kin}=3.8А ГэВ _{Матаеv М. Int. J. Mod. Phys. E. – 2024. – Т. 33, №11. – С. 2441009.}

Дальнейшее применение методики

Phys.Part.Nucl. 55 (2024) 4, 853-858

42

Положения выносимые на защиту

- Зависимости коэффициента направленного потока v₁ протонов от центральности столкновения, поперечного импульса р_т и быстроты у_{ст} для столкновений Au+Au и Ag+Ag при энергиях E_{kin} =1,23-1,58А ГэВ (√s_{NN}=2,4-2,55 ГэВ) в эксперименте HADES.
- 2. Метод учета вклада непотоковых корреляций и изучения их влияния на измеренные значения коэффициентов потоков v_n для экспериментов с фиксированной мишенью в условиях сильной неоднородности азимутального акцпетанса установки.
- Результаты сравнения измеренных значений направленного потока v₁ с расчетами в рамках современных моделей ядро-ядерных столкновений, проверка эффекта масштабирования v₁ с энергией столкновения и геометрией области перекрытия.
- 4. Полученные оценки эффективности измерения коллективных потоков на экспериментальной установке BM@N.

Доклады на конференциях

- 1. Международная конференция «Ядро» (2020, 2021, 2024, Россия)
- 2. Международный семинар «Исследования возможностей физических установок на FAIR и NICA» (2021, Россия)
- 3. Международная научная конференция молодых учёных и специалистов «AYSS» (2022, 2023, 2024, ОИЯИ)
- 4. Международная конференция по физике элементарных частиц и астрофизике «ICPPA» (2020, 2022, 2024 Россия)
- 5. Ломоносовская конференция по физике элементарных частиц (2023, Россия)
- 6. XXV Международный Балдинский семинар по проблемам физики высоких энергий (2023, ОИЯИ),
- 7. Международный семинар «NICA» (2022, 2023, 2024, Россия),
- 8. Научная сессия ядерной физики ОФН РАН (2024, 2025, Россия),
- 9. Международная конференция «HSFI» (2024, Россия)
- 10. Международный семинар «Россия–Китай на установке NICA» (2024, Китай)

Публикации

- 1. Mamaev M., Golosov O., Selyuzhenkov I. Directed flow of protons with the event plane and scalar product methods in the HADES experiment at SIS18 // J. Phys. Conf. Ser. 2020. T. 1690, № 1. C. 012122.
- 2. Mamaev M., Golosov O., Selyuzhenkov I. Estimating Non-Flow Effects in Measurements of Anisotropic Flow of Protons with the HADES Experiment at GSI // Phys. Part. Nucl. 2022. T. 53, № 2. C. 277—281.
- 3. Mamaev M. Performance Towards Spectator Symmetry Plane Estimation Using Forwad Hadron Calorimeter in the BM@N Experiment // Phys. Part. Nucl. Lett. 2023. T. 20, № 5. C. 1205—1208.
- 4. Mamaev M., Taranenko A. Toward the System Size Dependence of Anisotropic Flow in Heavy-Ion Collisions at *sN N* = 2–5 GeV // Particles. — 2023. — T. 6, № 2. — C. 622—637.
- 5. Adamczewski-Musch J., Mamaev M., [HADES collaboration] Directed, Elliptic, and Higher Order Flow Harmonics of Protons, Deuterons, and Tritons in Au+Au Collisions at √*s*N N = 2.4 GeV // Phys. Rev. Lett. 2020. T. 125. C. 262301.
- 6. Mamaev M. Baryonic Matter @ Nuclotron: Upgrade and Physics Program Overview // Physics of Atomic Nuclei. 2024. T. 87, № 1. C. 311—318.
- 7. Mamaev M. On the Azimuthal Flow of Protons in the Heavy Ion Collisions at $\sqrt{sNN} = 2-4$ GeV // Physics of Particles and Nuclei Letters. 2024. T. 21, Nº 4. C. 661—663.
- 8. Mamaev M. On the Scaling Properties of the Directed Flow of Protons in Au + Au and Ag + Ag Collisions at the Beam Energies of 1.23 and 1.58A GeV // Physics of Particles and Nuclei. 2024. T. 55, № 4. C. 832—835.
- 9. Mamaev M. Directed flow of protons in Xe+CsI collisions at the energy of 3.8AGeV at BM@N (NICA) // Int. J. Mod. Phys. E. 2024. T. 33, №11. C. 2441009.

https://www.scopus.com/authid/detail.uri?authorId=57221812005

Заключение

- Разработан метод учета корреляций, не связанных с коллективным движением рожденных частиц (непотоковых корреляций), и изучено их влияние на результаты измерения коллективных потоков в области энергий 1,2-4А ГэВ.
- Впервые получены зависимости v₁ протонов от быстроты и поперечного импульса, а также наклона dv₁/dy_{cm}|_{ycm=0} в области средних быстрот в столкновениях Au+Au при энергии E_{kin}=1,23A ГэВ и Ag+Ag при энергиях E_{kin}=1,23A и E_{kin}=1,58A ГэВ в эксперименте HADES. Полученные новые результаты измерения v₁ протонов современными методами анализа являются принципиально важными для проверки и дальнейшего развития теоретических моделей ядро-ядерных столкновений.
- Обнаружено масштабирование направленного потока протонов с~временем пролета ядер t_{раss} и геометрией столкновения в области энергий E_{kin}=1,23A и E_{kin}=1,58A ГэВ, что позволяет оценить влияние спектаторов налетающего ядра на формирование направленного потока протонов.
- На основе моделирования установки детально изучены возможности измерения коллективных потоков протонов на экспериментальной установке BM@N (NICA), что позволило расширить существующую физическую программу эксперимента.

Разработанные автором методы измерения анизотропных потоков планируется применить для получения результатов v₁ для заряженных адронов, легких ядер и гиперонов в эксперименте BM@N и MPD.

BACKUP

- All the methods used for performance study were carried out using QnTools framework: <u>https://github.com/HeavyIonAnalysis/QnTools</u> (well documented and well-tested)
- Methods for flow measurements in fixed-target experiments were tested on experimental data from NA61/SHINE, HADES and ALICE
- Tested and implemented in MPD root

Масштабирование dv₁/dy с энергией столкновения и размером системы

- После корректировки зависимости от времени пролета (y_{beam}) dv₁/dy' не зависит от размера сталкивающихся ядер и энергии столкновения, а зависит только от относительного прицельного параметра (/ A^{1/3})
- Замена центральности на /А^{1/3} улучшает масштабирование dv₁/dy' в центральных столкновениях

dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n = e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal Tp: p; 0.4 < y < 0.6; $0.2 < p_T < 2$ GeV/c; w=1/eff T π : π -; 0.2 < y < 0.8; $0.1 < p_T < 0.5$ GeV/c; w=1/eff T-: all negative; $1.0 < \eta < 2.0$; $0.1 < p_T < 0.5$ GeV/c; w=1/eff ⁵¹

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

53

SP R1: DCMQGCM-SMM Xe+Cs@4A GeV

SP gives unbiased estimation of v_n (root-mean-square) EP gives biased estimation (somewhere between mean and RMS)

Using the additional sub-events from tracking provides a robust combination to calculate resolution 54

Models

- Cascade mode fail to reproduce flow signal
- Mean-Field models reproduce flow signal up to 4th harmonic

Simulation datasample

- Xe+Cs nuclei collisions
- DCMQGSM-SMM model (realistic yields of spectator fragments), describes flow poorly
- JAM model (realistic flow signal)
- Geant4 transport code (important for simulation of hadronic showers in the forward calorimeter)
- Realistic reconstruction

	2A GeV	3A GeV	4A GeV
DCMQGSM-SMM	6M	6M	2M
JAM MD2	3M	3M	5M

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n = e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal: **Tp:** p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff **Tπ:** π-; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff **T-:** all negative; 1.0<η<2.0; 0.1 < p_T < 0.5 GeV/c; w=1/eff ⁵⁷

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Resolution is lower for higher energies due to lower v_1

Directed and elliptic flow in Xe+Cs (JAM)

Good agreement between reconstructed and pure model data for all three energies

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_T > 0.2 GeV/c

Results for v_1 and v_2 are in progress

Corrections due to non-uniform acceptance

Residual effect due to non-uniform acceptance is 2%

The HADES at SIS-18 accelerator (GSI, Germany)

2012: Au+Au @ E_{lab} =1.23A GeV ($\sqrt{s_{NN}}$ =2.4 GeV) 2019: Ag+Ag @ E_{lab} =1.23A GeV ($\sqrt{s_{NN}}$ =2.4 GeV) @ E_{lab} =1.58A GeV ($\sqrt{s_{NN}}$ =2.6 GeV)

Reaction plane estimation using the deflection of projectile spectors

Systematic error table

	Неоднородность аксептанса	Непотоковые корреляции	Общая
Аu+Au при Е _{kin} =1.23 <i>A</i> ГэВ	2%	2%	3%
Ад+Ад при Е _{kin} =1.23 <i>А</i> ГэВ	2%	5%	5%
Ад+Ад при Е _{kin} =1.58 <i>А</i> ГэВ	2%	5%	5%

Коллективные потоки в столкновения Au+Au E_{kin}=1.23A ГэВ

Коллективные потоки в Au+Au@1.23А ГэВ измерены до 6 гармоники

- Восстановлена трехмерная картина вылета частиц
- Опередена систематическая погрешность, связанная с методикой оценки плоскости реакции

Table for the systematic uncertainties

	Неоднородность аксептанса	Непотоковые корреляции	Общая
Xe+Cs при E _{kin} =2A ГэВ	3%	4%	5%
Хе+Сѕ при Е _{кіп} =3А ГэВ	3%	4%	5%
Хе+Сѕ при Е _{кіп} =4А ГэВ	3%	4%	5%

Для более высоких энергий R_1 ниже, поскольку ниже v_1

Неодноросдность азимутального аксептанса HADES

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

68

Сравнение методов измерения v_1 в эксперименте HADES

Систематическая ошибка из-за метода измерениях v₁ менее 5% в среднецентральных столкновениях Au+Au

Роль анизотропных потоков в открытии КГМ

Сравнение гидродинамических расчетов для v_n с экспериментальными измерениями показывает самую низкую в природе η/s

Влияние спектаторов на анизотропные потоки

v_n протонов в столкновениях Au+Au при энергиях 2-8 АГэВ и уравнение состояния (EOS) симметричной ядерной материи

v₁ предполагает *К_{mn}*≈210 МэВ

v₂ предполагает К_{mn}≈300 МэВ

Разница в значениях несжимаемости ядерной материи *К_{mn}* может быть объяснена вкладом непотоковых корреляций в измерения v_n эксперимента E895 (AGS)
Влияние азимутального аксептанса

Уравнение состояния сильновзаимодействующей материи

Давление для постоянной температуры:

$$P = n_B^2 \frac{\partial (E/A)}{\partial n_B}$$

где Е/А — энергия на нуклон, n_в — число барионов. Энергия связи Е/А определяется как:

$$E/A = E_A(n_B) + E_{sym}(n_B) \frac{(n_p - n_n)^2}{n_B^2}$$

где Е_А — энергия симметричной материи, Е_{sym} — энергия симметрии.

Уравнение состояния ядерной материи может быть охарактеризован коэффициентом несжимаемости:

$$K = 9n_B^2 \frac{\partial^2 (E/A)}{\partial n_B^2}$$

Систематические ошибки для данных Аи+Аи 1.23А ГэВ

Eur.Phys.J.A 59 (2023) 4, 80

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=2.4~{\rm GeV}$

HADES collaboration

J. Adamczewski-Musch⁵, O. Arnold^{10,9}, C. Behnke⁸, A. Belounnas¹³, J.C. Berger-Chen^{10,9}, A. Blanco², C. Blume⁸, M. Böhmer¹⁰, P. Bordalo², L. Chlad¹⁴, I. Ciepal³, C. Deveaux¹¹, J. Dreyer⁷, E. Epple^{10,9}, L. Fabbietti^{10,9}, P. Filip¹, P. Fonte^{2,a}, C. Franco², J. Friese¹⁰, I. Fröhlich⁸, T. Galatyuk^{6,5}, J.A. Garzón¹⁵, R. Gernhäuser¹⁰, R. Greifenhagen^{7,b,†}, M. Gumberidze^{5,6}, S. Harabasz^{6,4}, T. Heinz⁵, T. Hennino¹³, S. Hlavac¹, C. Höhne^{11,5}, R. Holzmann⁵, B. Kämpfer^{7,b}, B. Kardan⁸, I. Koenig⁵, W. Koenig⁵, M. Kohls⁸, B.W. Kolb⁵, G. Korcyl⁴, G. Kornakov⁶, F. Kornas⁶, R. Kotte⁷, A. Kugler¹⁴, T. Kunz¹⁰, R. Lalik⁴, K. Lapidus^{10,9}, L. Lopes², M. Lorenz⁸, T. Mahmoud¹¹, L. Maier¹⁰, A. Malige⁴, A. Mangiarotti², J. Markert⁵, T. Matulewicz¹⁶, S. Maurus¹⁰, V. Metag¹¹, J. Michel⁸, D.M. Mihaylov^{10,9}, C. Müntz⁸, R. Münzer^{10,9}, L. Naumann⁷, K. Nowakowski⁴, Y. Parpottas¹⁸, V. Pechenov⁵, O. Pechenova⁵, K. Piasecki¹⁶, J. Pietraszko⁵, W. Przygoda⁴, K. Pysz³, S. Ramos², B. Ramstein¹³, N. Rathod⁴, P. Rodriguez-Ramos¹⁴, P. Rosier¹³, A. Rost⁶, A. Rustamov⁵, P. Salabura⁴, T. Scheib⁸, H. Schuldes⁸, E. Schwab⁵, F. Scozzi^{6,13}, F. Seck⁶, P. Sellheim⁸, I. Selyuzhenkov⁵, J. Siebenson¹⁰. L. Silva², U. Singh⁴, J. Smyrski⁴, Yu.G. Sobolev¹⁴, S. Spataro¹⁷, S. Spies⁸, H. Ströbele⁸, J. Stroth^{8,5}, C. Sturm⁵, O. Svoboda¹⁴, M. Szala⁸, P. Tlusty¹⁴, M. Traxler⁵, H. Tsertos¹², V. Wagner¹⁴, C. Wendisch⁵, M.G. Wiebusch⁵, J. Wirth^{10,9}, D. Wójcik¹⁶, P. Zumbruch⁵

The main contribution to the global systematic uncertainty arises from the event-plane resolution. This is mainly caused by so-called "non-flow" correlations which can distort the event-plane determination. The magnitude of these systematic effects is evaluated using the three-sub-event method, i.e. by determining the event-plane resolution for combinations of different subevents separated in rapidity. It is found to be below 5 % for the centralities 10 - 40 % [36].

36. M. Mamaev, O. Golosov, and I. Selyuzhenkov (HADES), Phys. Part. Nucl. **53**, 277 (2022).

Directed flow of protons and EOS of symmetric matter

Nuclear incompressibility from collective proton flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Both STAR and BM@N results for directed flow prefer stiff EOS

MPD in Fixed-Target Mode (FXT) vs BM@N

Please see Pater Parfenov talk at Nucleus-2024 – 02/07//2024

Исследование фазовой диаграммы КХД материи

Высокая барионная плотность: столкновения нейтронных звезд

2005 – Открытие Кварк-Глюонной Материи (КГМ) в столкновениях Au+Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ в экспериментах на коллайдере RHIC (БНЛ). КГМ - сильно взаимодействующую жидкость с очень малой вязкостью

2010 - Поиск сигналов деконфайнмента, фазового перехода первого рода и критической точки КХД материи - основа для программ сканирования по энергии столкновения ядер в современных экспериментах на ускорителях: RHIC, SPS, Nuclotron, SIS18 78

Непотоковые корреляции

Корреляции не относящиеся к изначальному коллективному движению частиц называют непотоковыми:

- Фемтоскопические корреляции
- Закон сохранения импульса
- Корреляция продуктов распада
- Корреляции возникающие в материале детектора (адронный ливень, магнитное поле)

Основной способ подавить непотоковые корреляции — внести разделение по (псевдо-) быстроте между Q_n-векторами

Неодноросдность азимутального аксептанса HADES

$$u_{1} = (x_{1}, y_{1}) \quad Q_{1} = (X_{1}, Y_{1})$$
$$v_{1} = \frac{\langle u_{1}Q_{1} \rangle}{R_{1}} = 2 \frac{\langle x_{1}X_{1} \rangle}{R_{1}^{X}} = 2 \frac{\langle y_{1}Y_{1} \rangle}{R_{1}^{Y}}$$
$$R_{1}^{X} = \frac{\sqrt{\langle X^{a}X^{b} \rangle \langle X^{a}X^{c} \rangle}}{\sqrt{\langle X^{b}X^{c} \rangle}}$$

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Предложенный метод измерения v₁

- 1. Измерения производятся относительно плоскости симметрии спектаторов, чтобы уменьшить вклад непотоковых корреляций
- 2. Измерения выполняются методом скалярного произведения, который дает более устойчивую оценку v₁
- При помощи сравнения v₁, полученного с использованием двух компонент корреляции предлагается оценивать вклад остаточного влияния азимутальной неоднородности аксептанса
- Сравнивая v₁, полученный относительно различных плоскостей симметрии предлагается оценивать вклад непотоковых корреляций в полученные значения азимутального потока

Векторы потока u_n и Q

Из импульса каждой частицы определяется единичный вектор и .:

 $\vec{u}_n = (\cos n\varphi, \sin n\varphi)$

где ф — азимутальный угол импульса

Сумма по группе частиц в одном событии даёт оценку угла плоскости реакции в событии:

$$\vec{Q}_n = \frac{\sum_{k=1}^M w_k u_n^k}{C} = \frac{|Q|}{C} (\cos n \Psi_n^{EP} \sin n \Psi_n^{EP})$$

 Ψ_n^{EP} — угол плоскости симметрии (оценка угла плоскости реакции)

и₁-вектора, дающие в сумме Q₁-вектор 1.0 0.5 U, > 0.0 -1.0-0.5 0.5 -1.00.0 1.0 x **Projectile Spectators** Participants Forward Wall Target Spectators Reaction Plane

82

-0.5

Разрешение плоскости симметрии

$$v_1=rac{\langle u_1Q_1^{F1}
angle}{R_1^{F1}}$$
 $v_2=rac{\langle u_2Q_1^{F1}Q_1^{F3}
angle}{R_1^{F1}R_1^{F3}}$
де R₁ — разрешение плоскости симметрии

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Метод случайных подсобытий:

Методика измерения азимутальных потоков

- Направленный поток достигает максимума в кинематической области спектаторов
- Для восстановления плоскости симметрии используются спектаторы, чтобы подавить вклад непотоковых корреляций

Цель работы

Экспериментальное исследование коллективной анизотропии протонов в ядро-ядерных столкновениях Au+Au и Ag+Ag при энергиях E_{kin}=1,23-1,58*A* ГэВ (√s_{NN}=2,4-2,55 ГэВ) в эксперименте HADES (GSI), а также изучение возможности проведения измерений коллективной анизотропии в эксперименте BM@N (NICA).