Особенности создания высокоэффективной вето-системы в экспериментах по поиску нарушения лептонного числа

Features of the creation of a highly efficient veto system

in experiments to search for lepton flower violation

докладчик: А. Симоненко, НЭОМАП

Научно-методический семинар ЛЯП, ОИЯИ 15 мая 2025

План выступления:

- □ Немного теории
- Сравнение установок Mu2e и COMET
- □ Участие НЭОМАП в Mu2e (кратко, основной вклад)
- □ НИОКР по вето-системе СОМЕТ (более подробно)
- Итоги

14.05.2025

НАРУШЕНИЕ ЛЕПТОННОГО ЧИСЛА И СМ

µ-e conversion $\mu^{-} + (A, Z) \rightarrow e^{-} + (A, Z)$

W

 ν_{μ}

SUSY

 ${
m BR}(\mu
ightarrow e \gamma) ~=~$

 $rac{3lpha}{32\pi}$

Ν

w

Heavy Neutrinos

 ν_e

 $\left|\sum_{i=2,3}U_{\mu i}^{*}U_{ei}\frac{\Delta m_{1i}^{2}}{M_{W}^{2}}\right|^{2}$

Сигнальное событие моноэнергетичный электрон 105 МэВ (для алюминия)

Обнаружение µ-е конверсии – очевидное доказательство новой физики за пределами СМ

MEG II B(μ + -> e+ γ) < 1.5 x 10⁻¹³ (90%C.L.)

Идея эксперимента предложена акад. В.М.Лобашевым и Р.М.Джилкибаевым Поиск процесса $\mu \rightarrow e$ конверсии на ядре, Ядерная физика, 49, 384 (1989).

Ми2е и СОМЕТ

Сгусток р

0.08

0.05

0.04

0.01

Mu2e и COMET – эксперименты нового поколения благодаря новым способам подавления фона:

- Импульсный интенсивный протонный пучок, способный создавать > 10¹¹ мюонов/сек
- Градиентное магнитное поле
- Изогнутый транспортный соленоид
- Обязательное условие: сведение к минимуму протонов, 10⁻¹⁰ протонов вне сгустка/в сгустке
- Окно сигнала сдвинуто на 700 нс относительно сгустка протонов, что хорошо подходит для τ^{Al} = 864ns

Сгусток р

Вид установок

Ожидаемая Чувствительность одиночного события - $2.87 imes 10^{-17}$

COMET J-PARC (Япония)

Вето-система эксперимента Ми2е

без вето – 1 фейковое событие в день

ХАРАКТЕРИСТИКИ:

- площадь: 335 m²
- масса 75,5 тонн
- 83 модуля; 10 типов
- 5,376 счетчиков
- 52,7 км WLS волокон
- 19,456 SiPMs
- 4,864 Counter motherboards
- 316 Front-end Boards
- 16 Readout Controllers

Дизайн: необходимость максимальной эффективности, большой площади, минимальных зазоров

сцинтиллятор

- □ Сцинтилляционная пластина 5 x 2 x (300 660) см³
- 2 волокна с считыванием SiPM
- Слои разделены алюминиевым абсорбером
- 🛛 Сдвиг слоев 42 мм
- Зазор между модулями 1.5 мм
- Эффективность слоя > 99.4%
- Bec модуля (ср.) ~ 0.9 тонны

Участие в создании вето-системы Mu2e (2012 – начало 2020 гг)

- Участие в тестах на пучках протонов 120 ГэВ прототипов сцинтиллятора в Фермилабе
- Разработка технологии сборки дикаунтеров (спаренных сцинтил. пластин)
- Разработка и создание стенда для измерении старения сцинтилляционных пластин при массовом производстве в университете Вирджинии
- Разработка и создание стенда для проверки модулей космическими лучами с использованием катод-стрип камер (CSC) в унив. Вирджинии
- Сборке модулей в унив. Вирджинии (30% собрано с нашим участием)
- Предложен метод увеличения светосбора для «горячих» зон вето-системы (+40%), путем заливки жидкого оптического наполнителя в отверстия сцинтиллятора
- Разработана технология закачки наполнителя при массовом производстве

- o Photoelectron Yields of Scintillation Counters with Embedded Wavelength-Shifting Fibers Read Out With Silicon Photomultipliers, Akram Artikov, ..., D.Chokheli et al., Nucl.Instrum.Meth. A890 (2018) 84-95
- Fermilab Testbeam Facility Annual Report FY 2015, M.G. Albrow (Fermilab), ..., D.Chokheli et al., Nov 2015, 30 pp. FERMILAB-TM-2615-DI
- Test beam studies of CRV prototype for Mu2e, Mu2e Document 5541-v4, G. Dukes,..., D.Chokheli et al., May 18, 2015
- Performance of Scintillator Counters with Silicon Photomultiplier Readout, Mu2e Cosmic Ray Veto Group (A. Artikov (Dubna, JINR), ..., 0 D.Chokheli et al.). Nov 1, 2015. 11 pp. Proceedings of the Division of Particles and Fields 2015, DPF 2015-350, Conference: C15-08-04

A.Artikov, et al. Light yield and radiation hardness studies of scintillator strips with a filler Nucl.Instrum.Meth. A930 (2019) 87-94

A.M. Artikov, et al., Increase in the light collection from a scintillation strip with a hole for the WLS fiber using filling materials of various types Phys.Part.Nucl.Lett. 14 (2017) no.1, 139-143

A.Artikov, et al., Optimization of light yield by injecting an optical filler into the co-extruded hole of the plastic scintillation bar JINST 11 (2016) no.05

8

Вето-система на сцинтилляционных стрипах для СОМЕТ

- Нужно получить максимальную эффективность
- Общая концепция модуля: 4 слоя сцинтиллятора со сдвигом относительно друг друга и совпадения 3 из 4 слоев для регистрации частицы – опыт Mu2e

Начальные условия:

- ограничения на толщину крыши вето-системы
- технология производства сцинтилляционных стрипов (производитель ООО «Унипласт», г. Владимир)

Этапы работ:

Измерения необходимые для моделирования

Сборка первого рабочего модуля

Поперечное сканирование стрипов на космике

Поперечное сканирование спаренных сцинт. пластин на тестовом пучке одиночных протонов 120 ГэВ в Фермилабе Стрипы:

- 2 пластины 7х40 и 2 пластины 10х40 мм длинной 3 метра
- вклеено волокно 1.2.мм Kuraray Y11

Годоскоп:

- активная площадь 40х40 мм² в 250 см от края стрипа
- волокно квадратного сечения Kuraray SCSF-81J
- шаг измерений 2.5 мм
- SiPM Hamamatsu S13360-1350CS площадь 1.3 мм² везде
- DAQ CAEN DT5702

Поперечное сканирование стрипов бета-источником ⁹⁰Sr/⁹⁰Y

Измерялись:

- стрипы 7х40 и 10х40 мм
- канавкой «вверх» и канавкой «вниз»
- шаг сканирования 0.5 мм
- DAQ пикоамперметр Keithley 6847

Источник:

- обернут 100 мкм. АІ фольгой (подавление < 0.2 МэВ электронов)
- коллиматор с отверстием 1 мм

Моделирование вероятности регистрации заряженных частиц

Полный световыход по пути L (мм):

В GEANT 4 оценивалась эффективность сборок:

- 4 слоя по 15 стрипов и 4 слоя по 4 стрипа
- размеры стрипов 7х40х3200мм и 10х40х3200мм
- зазоры между слоями: 0.5мм (воздух) + 2мм (аллюм.) + 0.5мм (воздух)
- зазоры между стрипами: 0.2мм (светоотраж.) + 0.1мм (воздух) + 0.2мм (светоотраж)
- интервал точки входа -40мм до +40мм с шагом 0.2 мм
- «0» шкалы установлен в середине 8-го стрипа верхнего слоя
- угловой интервал -75° до +75° с шагом 1°
- Аµ = 21 ± 3 ф.э. и 30 ± 4 ф.э. на расстоянии 2500мм от фотоприемника
- порог дискриминации 5 ф.э.
- использовались различные комбинации сдвигов слоев относительно друг друга

$$\mu = \int_0^L A_\mu f_{rel}(l) dl = \int_0^L F_\mu(l) dl \approx \sum_{i=0}^N F_{\mu_i}^{mean} L_i = \sum_{i=0}^N \mu_i$$

 A_{μ} - измеренный средний световыход (в ф.э.) со всей ширины стрипа

 $f_{rel}(l)$ - эксперим. ф-ция распределения относительного световыхода

Моделирование эффективности модуля

Примеры карт вероятности регистрации для различных вариантов сдвига слоев (60000 значений для каждой карты) для стрипов 7х40х3200мм с одной канавкой

Лучшие комбинации для 7мм

Shift pattern	Overall efficiency
20-20-20 mm	0.99902(0.00009)
10-10-10 mm	0.99976(0.00006)
8-8-8 mm	0.99988(0.00005)
8-10-6 mm	0.99983(0.00005)
8-10-8 mm	0.99985(0.00005)
8-10-10 mm	0.99981(0.00005)
8-10-12 mm	0.99976(0.00006)
8-10-14 mm	0.99968(0.00006)
8-10-16 mm	0.99963(0.00006)
8-10-18 mm	0.99958(0.00006)

 Эффективность счетчика зависит от количества фотоэлектронов, собранных на фотодетекторе, и от установленного порога дискриминации и легко подсчитать с помощью формулы:

$$Prob(\mu) = 0.5 + \frac{erf\left(\frac{\mu-5}{\sqrt{2\mu}}\right)}{2}$$

• Эффективность слоя:

 $Prob_{layer} = 1 - \overline{Prob}_{layer} = 1 - (1 - Prob_{strip1}) \times (1 - Prob_{strip2}) \times \dots \times (1 - Prob_{stripN})$

 Для подсчета эффективности модуля по схеме «3+1 слой» используется развернутая формула:

$$\begin{split} Prob_{module} &= Prob_{Layer1} \times Prob_{Layer2} \times Prob_{Layer3} \times (1 - Prob_{Layer4}) + \\ Prob_{Layer1} \times Prob_{Layer2} \times (1 - Prob_{Layer3}) \times Prob_{Layer4} + \\ Prob_{Layer1} \times (1 - Prob_{Layer2}) \times Prob_{Layer3} \times Prob_{Layer4} + \\ (1 - Prob_{Layer1}) \times Prob_{Layer2} \times Prob_{Layer3} \times Prob_{Layer4} + \\ Prob_{Layer1} \times Prob_{Layer2} \times Prob_{Layer3} \times Prob_{Layer4} \end{split}$$

Моделирование вероятности регистрации заряженных частиц

Pattern: 8-8-8	7-mm strips case	10-mm strips case
Initial light yield	21 ph.e.	30 ph.e.
Overall efficiency, initial state	99.988(0.004)%	100.000(0.000)%
Overall efficiency, 3-year-aging by 6% per year	99.780(0.005)%	99.999(0.000)%
Overall efficiency, 13-year-aging by 6% per year	88.12(0.06)%	99.99(0.004)%

Вывод: стрип толщиной 7 мм

***A. Artikov, D. Chokheli, G. Pauletta, A. Simonenko, The loss of light yield with time in the CDF II scintillation counters, Nucl. Instrum. Methods Phys. Res. A 672 (2012) 46 – 51. doi:10.1016/j.nima.2011.12.112.

с 1 канавкой не подходит

Создание и тестирование сборки 4х4 на стрипах толщиной 7 мм

- 16 стрипов 7х40х3200 куб.мм с одной канавкой ٠
- вклеено волокно 1.2.мм Kuraray Y11 (200) ٠
- между слоями проложены 2мм алюмин. листы .

- два тригг. счетчика 126х60х20 куб.мм в 250 см от края стрипа
- SiPM Hamamatsu S13360-1350CS площадь 1.3 мм² везде
- DAQ CAEN DT5702 •

"High efficiency muon registration system based on scintillation strips", NIMA, Vol.1064, July 2024, 169436

Сравнение результатов

общая смоделированная (GEANT 4) эффективность сборки 99.74 ± 0.05 % для светосбора 21 ф.э. (включено угловое распределение интенсивности мюонов) 99.93 ± 0.05 % для светосбора 25 ф.э.

Получено хорошее согласие между моделированием и экспериментом Увеличение светосбора со стрипа -> путь к достижению эффективности регистрации модуля 99.99%

"High efficiency muon registration system based on scintillation strips", NIMA, Vol.1064, July 2024, 169436

Поперечное сканирование стрипов различной конфигурации

Образцы сцинтиллятора UPS923A (г. Харьков)

Конфигу	рация	Комбинир. анодный ток ФЭУ, нА	Эффект		
одно 1.2 мм во	олокно	14.5	0 %		
одно 1.4 мм во	олокно	21.4	48 %		
одно 1.8 мм во	олокно	26.0	79 %		
два 1.2 мм вол одной канавке	токна в	19.6	35 %		
два 1.2 мм	13 мм	22.1	52 %		
волокна в лвух	16 мм	20.8	43 %		
канавках	20 мм	20.9	44 %		

 \triangleright 13, 16 и 20 мм – расстояние между канавками на стрипе

Итоги:

- будем рассматривать 2 канавки и более толстое волокно
- не забывать о финансовой составляющей
- ограничили толщину стрипов не более 7 мм из-за геометрии установки

2 WLS fibers insreted to the different groove with distances L between of 2 WLS fibers insreted to the different groove with distances L between of

1 WLS 1.2 mm fiber inserted to the groove with depth of h

ent, in nA

 β beam from 90 Sr/ 90 Y source was collimated to 1mm

Beam entrance point relative to the strip center, mm

30

Поперечное сканирование стрипов различной конфигурации

стрипы пр-ва «Унипласт» (г. Владимир)

В итоге, по совокупности полученных результатов, был выбран стрип с сечением 50х7 мм², с двумя волокнами, с покрытием «верх-низ» и AI-майларом на торцах

Разработка дизайна стрипа рабочего модуля

- □ итоговый дизайн стрипов 7х50 мм² с двумя канавками, на конце схождение
- торцы стрипов без травления, вместо него АІ-майлар для уменьшения зазора
- □ волокно Kuraray Y11 (200) 1.4 мм для крыши и 1.2 мм для стенок
- □ коннектор на стрипе предложен производителем стрипов (BNL design for HCAL)
- ответная часть для SiPM разработана нами

Коэффициенты пропускания оптического эпоксидного и кремнийсодержащего клеев до и после облучения быстрыми нейтронами

Впервые клей СКТН без отвердителя был применен для заполнения отверстий сцинт. пластин вето-системы Mu2e

- вязкость клея СКТН растет от А до Е;
- предпочтительно использование клея марки А, Б

(самые жидкие, пузырьки успевают выйти при застывании)

Стресс-тест стрипов с вклееным волокном для проверки адгезии

⁹⁰Sr+⁹⁰Y BICRON BC-600SKTN(Si) type B

to Keithley 6847 pico-ammeter

 Мы в одном стрипе с двумя параллельными канавками установили волокна разными клеями

Отсутствие видимых изменений световыхода после механического воздействия свидетельствует о хорошей адгезии клея СКТН в канавке;

Выбор концентрации эпоксидка + ТіО2 для склеивания стрипов с АІ-листами

 Мы столкнулись с тем, что склейка стрипов с алюминиевым листом чистой эпоксидной смолой приводит к снижению светосбора, из-за эффекта «смачивания» травленной поверхности пластика

	образец 1 + AL	образец 1 + Al	образец 2 + AL	образец 2 + АІ	образец 3 + AL	образец 2 + АІ			
	(без клея)	(100% эпокси)	(без клея)	(75% эпокси + 25% TiO2)	(без клея)	(50% эпокси + 50% TiO2)			
световыход, ф.э.	31.89±0.2	25.09±0.8	61.84±0.6	53.65±0.5	55.77±0.41	56.4±0.61			
эффект, %		-21.32%		-13.24%		1.13%			

Тесты на прочность склеивания стрипов с АІ-листами клеем эпоксидным + ТІО2 (1:1)

 Было приложено усилие 50 кг (300 кПа) под углом 7° на площадь 4 см² в течении 2 суток – это минимум в 5 раз больше чем необходимо для модулей боковых секций

Экспресс-тест для проверки качества волокон на производстве

- мы обнаружили что WLS-волокно может иметь повреждения
- необходима быстрая и легко-проводимая проверка до вклеивания волокон сотрудниками на производстве
- нами был изготовлен излучатель синего света на основе пластикового сцинтиллятора и платы со стабилизированным питанием ультрафиолетового светодиода
- в качестве свето-приемника использовался SiPM Hamamatsu S12571-100C в режиме «солнечной панели»
- электродвижущая сила (ЭДС) возникающая на SiPM считывалась прецизионным мультиметром FLUKE 187 с расширенным диапазоном измерения напряжения до 1 мкВ
- излучатель приставлялся в нескольких точках вдоль файбера
- для каждого волокна строилась кривая значений напряжения и апроксимировалась ехр функцией
- измерения проводились в светоизолированой комнате в красном освещении в г. Владимир (ООО «Унипласт»)

Разработка и создание стенда проверки сцинт. пластин

- Стол 6x1.2 м
- 2D каретка с помощью бета-источника ⁹⁰Sr/⁹⁰Y позволяет одновременно измерять 16 стрипов

2D каретка

Софт по управлению проверки качества состоит из следующих модулей:

- Управление CITIROC модулем;
- Полученные данные с CITIROC сохраненные в виде гистограмм (ROOT6);
- Управление 2D кареткой;

Block diagram to control 2D cart with $\beta\mbox{-source}$

стенд в сборе

Финальные параметры модулей вето-системы СОМЕТ

Вид спереди

Вид сзади

- 802 00 000 0 0 000 00 000 ିତା 000 \bigcirc \bigcirc \bigcirc \bigcirc $\mathbf{\hat{O}}$ 000 000 000 802
- о Травление пластин сверху и снизу
- боковые грани закрыты аллюм. майларом 50 микрон (щели между стрипами уменьшились с 400 до 100 мкм)
- о Сдвиг между слоями 9-9-10 мм

тип модуля	размеры, мм	вес нетто, кг	WLS волокно	сьем света	толщина аллюминиевых листов между слоями, мм
CRV Top	4360x830x57	400	2 Ø1.4 мм	две стороны	10 – 5 – 5 – 5 – 2 <mark>(опыт Mu2e)</mark>
CRV Side	3200x830x57	300	2 Ø1.2 мм	одна сторона	10 - 5 - 5 - 5 - 2

Подготовка к сборке первого рабочего модуля в Корпусе 5 ЛЯП

- создание рабочего стола
- нарезка алюминиевых листов
- создание системы упоров для стягивания стрипов
- создание системы вакуумного прессования насосом 10⁻² бар (25 тонн равномерно на всю поверхность) - опыт Mu2e
- предварительная сборка (подгонка) всех частей модуля опыт Mu2e

Соответствует серийному модулю боковой секции

Layer	left					Top mount point view										right
	~	r	3	⊳	5	6	1	6	9	20	5	2	3	24	5	26
<u>Top, L4</u>	78	31	56	68	40	52	8	36	46	6	27	29	9	12	38	48
Middle, L3	97	33	50	47	58	35	37	53	2	39	43	11	23	4	21	70
Middle, L2	63	61	64	57	25	18	42	7	28	1	96	3	13	14	99	45
Bottom, L1	55	54	80	67	59	26	5	10	17	49	30	32	15	24	98	22

таблица номеров стрипов при сборке модуля

Финальная склейка первого модуля

обогрев стола

приготовление клея

участники + д.ф.м.н. Акрам Артыков

черный герметик по контуру

вакуумное прессование (2 суток)

нанесение и распределение клея

Упаковка и оформление документов на вывоз

моделирование прочности ящика

оформление документов на вывоз (санкционный период) ~ 1 год

(оформление документов на вывоз (досанкционный период) ~ 1 месяц)

J-PARC (Япония)

Итоги:

Сотрудниками НЭОМАП:

- ✓ Выполнен НИОКР по созданию части вето-системы эксперимента СОМЕТ основанной на пластиковых сцинтилляторах, определены все параметры и методика создания модулей
- Использован опыт и наработки полученные во время работы над вето-системой эксперимента Mu2e
- ✓ Внедрен метод упрощенной оценки световыхода (поперечное сканирование) для использования с моделировании GEANT 4 (опубликован в NIMA (2024г.))
- Проделана большая работа по повышению светосбора сцинтилляционных пластин в условиях ограничений на толщину пластика и технологию его производства
- ✓ Создан светоизолированный стенд с 2D-кареткой для проверки измерений длинномерных сцинтилляционных пластин
- ✓ Собран первый серийный модуль боковой секции вето-системы COMET
- ✓ Результаты доложены на Коллаборационных митингах СОМЕТ (СМ 32 44)

