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Outline of the talk

• Introduction

• The work of the SPSU group on SHE

• QED at supercritical Coulomb field

• How to observe the vacuum decay

• Conclusion
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Electronic structure of superheavy elements

Periodic Table of the Elements

V. Pershina, Radiochim. Acta 107, 833 (2019).
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Electronic structure of superheavy elements
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How do we define the ground state configuration?

Z=125

The ground state configuration is the configuration with the lowest

energy Eav. The ground state level is the level with the lowest E(J).

Ground state of superheavy elements with Z=120-170: systematic
study, including electron-correlation, Breit, and QED effects:
I.M. Savelyev et al, Phys. Rev. A 107, 042803 (2023)

(see also: O.R. Smits et al., Nature Reviews Physics 6, 86 (2024)).
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Melting temperature of Og and its homologues
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Melting temperature of Og and its homologues
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Extrapolated trend
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Melting temperature of Og and its homologues
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This work: N.K. Dulaev, talk at this workshop.

Physics of Heavy Ions, St. Petersburg 28 June - 1 July 2025 – p.7/24



Adsorption of SHEs on Au(111) Surface
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A Quantum Algorithm for Calculating Ionization Energy
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Noise level

DF difference

VQE difference

DIE algorithm

The difference between ionization energies E of Mc atom calculated
with quantum algorithms and the corresponding values ECAS−CI

estimated using the CAS-CI method (A.V. Durova, talk at this workshop).

The results of the IE algorithm are more robust to noise than the

differences of two separate VQE runs.
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Tests of QED with atomic systems

Light atoms (αZ ≪ 1, weak fields):

Tests of QED to lowest orders in α and αZ.

Heavy few-electron ions (αZ ∼ 1, strong fields):

Tests of QED in nonperturbative in αZ regime.

Low-energy heavy-ion collisions at Z1 + Z2 > 173 (supercritical fields):

Tests of QED in supercritical regime.
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QED at supercritical fields

Ionization in quantum mechanics

V0(x)

Nh̄ω

Multiphoton ionization

e ~E

V (x) = V0(x) + eEx

x1 x2

Tunneling ionization

The tunneling probability for a static uniform electric field E:

W ∼ exp
{

−
2

~

∫ x2

x1

dx
√

2m(V (x)− E)
}

where V (x) = V0(x) + eEx and E is the electron energy.
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QED at supercritical fields

Electron-positron pair creation

+mc2

positive-energy continuum

−mc2

negative-energy continuum

h̄(N1ω1 + . . .+Nnωn)

Multiphoton
pair creation

e ~E

+mc2

positive-energy continuum

−mc2

negative-energy continuum

x1 x2

Schwinger mechanism

The rate of pair production for a static uniform electric field E:

d4ne+e−

d3xdt
∼

c

4π3λC
4 exp

(

−π
Ec

E

)

where λC = ~/(mc) and Ec = m2c3/(e~) ≈ 1.3× 1016V/cm.
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QED at supercritical Coulomb field

Supercritical Coulomb field

S.S. Gershtein, Ya.B. Zel’dovich, 1969; W. Pieper, W. Greiner, 1969
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The 1s level dives into the negative-energy continuum at Zcrit ≈ 173.
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QED at supercritical Coulomb field

Supercritical Coulomb field

mc
2

V (x)

−mc
2

ε

The level with the energy ε < −mc2 belongs to both the positive and

negative energy continua if Z > Zcrit ≈ 173.
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Low-energy heavy-ion collisions

Creation of electron-positron pairs in low-energy heavy-ion collisions,
with Z1 + Z2 > 173
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Dynamical mechanism: a),b),c). Spontaneous mechanism (vacuum
decay): d). The 1s state dives into the negative-energy continuum for

about 10−21 sec.
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Low-energy heavy-ion collisions

Positron production probability in 5.9 MeV/u collisions of bare nuclei as
a function of distance of closest approach Rmin

(J. Reinhardt, B. Müller, and W. Greiner, Phys. Rev. A, 1981).

Conclusion by Frankfurt’s group (2005):The vacuum decay could only
be observed in collisions with nuclear sticking, in which the nuclei are

bound to each other for some period of time by nuclear forces.
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Low-energy heavy-ion collisions

New methods for calculations of quantum dynamics of
electron-positron field in low-energy heavy-ion collisions at subcritical
and supercritical regimes have been developed:

• I.I. Tupitsyn, Y.S. Kozhedub, V.M. Shabaev et al., Phys. Rev. A 82, 042701

(2010).

• I. I. Tupitsyn, Y. S. Kozhedub, V. M. Shabaev et al., Phys. Rev. A 85, 032712

(2012).

• G. B. Deyneka, I. A. Maltsev, I. I. Tupitsyn et al., Russ. J. of Phys. Chem. B 6,

224 (2012).

• G. B. Deyneka, I. A. Maltsev, I. I. Tupitsyn et al., Eur. Phys. J. D 67, 258 (2013).

• Y.S. Kozhedub, V.M. Shabaev, I.I. Tupitsyn et al., Phys. Rev. A 90, 042709

(2014).

• I.A. Maltsev, V.M. Shabaev, I.I. Tupitsyn et al., NIMB, 408, 97 (2017).

• R.V. Popov, A.I. Bondarev, Y.S. Kozhedub et al., Eur. Phys. J. D 72, 115 (2018).

• I.A. Maltsev, V.M. Shabaev, R.V. Popov et al., Phys. Rev. A 98, 062709 (2018).
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Low-energy heavy-ion collisions

Time-dependent Dirac equation

i
∂

∂t
ψ(r, t) = (α · p+ βme + V (r, t))ψ(r, t)

with

V (r, t) = VA(|r−RA(t)|) + VB(|r−RB(t)|) .

We introduce two sets of the solutions (see book: E.S. Fradkin, D.M. Gitman,

S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum, 1991):

ψ
(+)
i (r, tin) = φini (r) , ψ

(−)
i (r, tout) = φouti (r) ,

where φini (r) and φouti (r) are the eigenfunctions of the Dirac

Hamiltonian at the corresponding time moments. The number of

created positrons in a state “p” is given by

np =
∑

i>F

∣

∣

∣

∫

drψ(−)†
p (r, t)ψ

(+)
i (r, t)

∣

∣

∣

2

.
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How to observe the vacuum decay

(I.A. Maltsev et al., PRL, 2019; R.V. Popov et al., PRD, 2020)
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We consider only the trajectories for which the minimal internuclear

distance is the same: Rmin = 17.5 fm. We introduce η = E/E0 ≥ 1.
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How to observe the vacuum decay
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Positron spectra in symmetric (Z = Z1 = Z2) collisions for different

collision energy η = E/E0 at Rmin = 17.5 fm. (R.V. Popov, V.M. Shabaev,

D.A. Telnov et al., PRD, 2020)
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How to observe the vacuum decay

Z = 83

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., PRD, 2024.
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How to observe the vacuum decay

Z = 92

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., PRD, 2024.
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How to observe the vacuum decay

Background effects creating positrons (W. Greiner et al., 1985)

• Internal conversion of γ-rays from nuclear states

• External conversion of γ-rays in the target

• External conversion of γ-rays in the detector

• Conversion of x-rays from nuclear or electronic bremsstrahlung

All these background effects can either be kept under control or they
can be neglected.
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Conclusion

The experimental study of the proposed scenarios for heavy-ion
collisions would either prove the vacuum decay in the supercritical
Coulomb field or lead to discovery of a new physical phenomenon,
which can not be described within the presently used QED formalism.

For details:

I.A. Maltsev, V.M. Shabaev, R.V. Popov et al., Phys. Rev. Lett. 123, 113401 (2019).

R.V. Popov, V.M. Shabaev, D.A. Telnov et al., Phys. Rev. D 102, 076005 (2020).

R.V. Popov, V.M. Shabaev, I.A. Maltsev et al., Phys. Rev. D 107, 116014 (2023).

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., Phys. Rev. D 109, 036008 (2024).

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., Phys. Rev. D 111, 016018 (2025).
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