Квантово-химические расчеты димеров оганесона и его гомологов

Д. П. Усов, Н. К. Дулаев, А. М. Рыжков, Л. В. Скрипников, И. И. Тупицын, В. М. Шабаев

Кафедра квантовой механики Физический факультет Санкт-Петербургский государственный университет

29 июня 2025

Motivation

Determining the limits of applicability of the Mendeleev's periodic law:

- Investigation of properties in comparison with homologues in the noble gases group.
- Investigation of the relativistic effects contribution to molecular properties.
- 2-particle interaction potentials for molecular dynamics methods → thermodynamic properties.

Methods

Hamiltonian:

Relativistic \rightarrow Non-Relativistic with pseudopotential

Mosyagin N.S., Zaitsevskii A.V., Titov A.V. (2020) GRECP - Generalized Relativistic Effective Core Potential: For Og atom:

– replaces 92 electrons with pseudopotential leaving us over all with a problem for the $6s^26p^66d^{10}7s^27p^6$ configuration, – allows to take into account relativistic effects and Breit interaction.

<u>Electronic correlation</u>:

Coupled-cluster method – CCSD(T) Programs - DIRAC, CFOUR

Basis set

Gaussian Type Orbitals:

$$R_l^{\alpha} = N_l^{\alpha} r^l e^{-\alpha r^2}, \qquad l = 0(s), 1(p), 2(d)...$$

Kaygorodov M. Y. et al. //Physical Review A. – (2021): 19s17p14d12f4g3h3i – basis set optimized on FSCC-SD calculations of electron affinity of Og.

Other approaches:

Jerabek P. et al. (2019): Construction of several smaller basis sets and extrapolation to complete basis set.

Shee A., Knecht S., Saue T. (2015); de Macedo L. G. M. et al. (2023) – Standard basis sets.

Og_2 potential energy curve

Og_2 molecular properties

	D_e, cm^{-1}	$R_e, \mathrm{\AA}$
CCSD(T) Scalar-Relativistic	360	4.515
CCSD(T) Full Relativistic	628	4.311
CCSDT(Q) Scalar-Relativistic ¹	366.17	4.4923
CCSDT(Q) Full Relativistic ¹	626.69	4.3137
$CCSD(T)^2$	624.24	4.329
MP2-srLDA ³	843.50	4.25

 1 Jerabek P. et al. (2019) 2 Shee A., Knecht S., Saue T. (2015) 3 de Macedo L. G. M. et al. (2023) Noble gas dimers: potential energies

7 / 10

Noble gas dimers: molecular properties

London effect $\frac{I\alpha^2}{R^6}$

I – ionization potential, α – polarizability.

Thank you for your attention