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Introduction

Our group carries out calculations of the electronic structure of superheavy elements (SHE), as well as

molecules and solids containing SHE [1-8].

Ground state electron configurations of the SHE

Ionization potentials and Electron affinities of the SHE

Localization of electronic states in the SHE: one-particle electron density, root-mean-square radii

(RMS) and widths of the electron-density distribution of valence shells, electron localization

functions (ELF), Shannon entropy

SHE compounds: potential curves, equilibrium distances, dissociation energies, atomic charges

and orbital populations

Orbital collapse of g-electrons in the SHE of the 8th period

Quantum electrodynamics (QED) corrections (110 ≤ Z ≤ 170). [5]
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Introduction. Specific features of electronic structure and chemical

properties of superheavy elements of the 7th and 8th periods

How Far Does the Periodic Table Go?

The electronic structure of SHEs is unique in several aspects:

The concept of the ground configuration for the elements of the 8th period is no longer

well-defined, since sets of relativistic atomic terms of different configurations are overlapping [1].

Strong relativistic effects cause contraction of the s1/2- and p1/2- orbitals, that is, the

maximum of the density distribution of these shells shifts to lower values of the radius and the

binding energies of these electrons increases.

This also leads to a decreasing of interatomic distances and an increasing of dissociation

energies of the SHE compounds

The contraction effect is a result of the increasing relativistic mass of electrons whose velocity

near the nucleus becomes comparable to the speed of light.

Spin-orbital splitting of valence 7p- and 8p- shells is very large, and reaches up about 10 eV for

the 7p- orbital in Og (Z=118) and about 75 eV for the 8p-orbital in Z=165.

Due to the strong contraction of s- and p1/2-shells and the huge spin-orbit splitting, the

8p3/2-shell of elements of the 8th period is populated only starting from Z=167, after filling the

9s-shell.

[1] I. M. Savelyev et al., Phys. Rev. A, 107, 042803 (2023)



Introduction. Specific features of electronic structure and chemical

properties of superheavy elements of the 7th and 8th periods

Example of the atom Og

Og is 118’th element of the 7th period of the 18-th group of noble (inert) gases with configuration

[Rn] 5f
14

6d
10

7s
2

7p
6
.

Due to the strong relativistic contraction, the radial distribution of the electron density of the

valence 7p1/2-shell of the Og atom starts to overlap with the outer core shells.

In Ref. [1] this effect in Og was interpreted as smearing out the valence electron density

distribution and its approaching to the case of the homogeneous electron gas.

Formally, Flerovium (Z=114) element of the 7th period with the configuration 7s
2
7p

2
is a

homologue of carbon 2s
2
2p

2
and belongs to the 14th group. However, the spin-orbit splitting of

the valence p-orbital in carbon is of the order of 6 meV, and in the Fl of the order of 6 eV, that is,

about 1000 times greater.

For this reason the 7p3/2- orbital of Fl is not populated with electrons and cannot take part in

formation of chemical bonds, in particular cannot take part in the formation of sp3

hybridization.

Starting from the Z = 125 element to Z=142, the 5g-shell with the large angular momentum (l=4)

is occupied with valence electrons.

The effective radial potential for the 5g-electron with large centrifugal repulsive term, has two

potential wells which leads to the so-called orbital collapse.

[1] P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett. 120, 053001

(2018).



Methods

In our work, we used several independent theoretical calculation methods.

Configuration Interaction Dirac-Fock-Sturm method (CI-DFS)

At the first step, to obtain the one-electron wave functions for the occupied atomic shells, we use

the Dirac-Fock method. Then the DFS orbitals are obtained by solving the DFS equations for the

vacant shells. At the last step, the relativistic CI+MBPT method is used to obtain the

many-electron wave functions and the total energies.

Fock Space Coupled-Cluster method (FSCC)

DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21 (2021),

http://www.diracprogram.org

FSCC method, in contrast to the one-configuration coupled-cluster method is capable of

providing not only the ground-state energy of an N-electron system, but also an important

fraction of system’s excitation spectrum, including ionization potentials, electron affinities, etc.

Relativistic Density Functional Theory (DFT).

AMS Band-DFT code is used in calculations of the electronic structure of molecules and solids

containing SHE

Code LAMPS-Mod.Dynamics was used in calculations of solids by molecular dynamics
method

To evaluate the QED correction we use the Model QED operator approach.

We incorporate the model QED operator (QEDMOD) into the many-electron Hamiltonian and

perform two series of the calculations: one with QED included into the Hamiltonian and the other

without it. The corresponding QED correction is the difference between these values.



Ground state configurations

DF average
DF average

Terms E(J)
Terms E(J)

8p
1
6f

3
5g

1
8p

1
6f

2
7d

1
5g

1

How do we define the ground state configuration?

Z=125

The ground configuration is the configuration with the lowest average energy Eav

The ground state level is the level with the lowest E(J)

Z = 125. The lowest Dirac-Fock energy levels within configuration average approximation and
for the relativistic terms

Configuration Eav
DF [a.u.] J EDF(J) [a.u.]

8p16f35g1
E1 -64627.549597 6.5 -64627.614303

8p16f27d15g1
E2 -64627.542119 8.5 -64627.638846

∆E = E2-E1 0.007478 -0.024543

These configurations have different parity and do not mix.



Spin-orbit splitting

Table 1: One-electron energies ε(nlj) and spin-orbit

splitting ∆SO [eV]

7-th period

Z ε(7p1/2) ε(7p3/2) ∆SO

114 10.4 4.5 5.9

116 14.3 6.1 8.2

118 20.1 8.3 11.8

8-th period

Z ε(8p1/2) ε(8p3/2) ∆SO

125 5.3 2.4 2.9

144 13.8 2.7 11.1

145 16.2 2.7 13.5

164 69.9 3.6 66.3

165 79.7 5.0 74.7

166 90.1 6.6 83.5



12th group of elements
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The figure shows that the average radius of the valence shell and the Shannon entropy, which

characterizes the localization degree of electrons, behave similarly depending on the atomic number.

Relativistic curves (solid line) in contrast to non-relativistic ones (dashed lines), indicate an increase in

the degree of electron localization with increasing atomic number.



14th group of elements
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5th group of elements
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The direct relativistic effect leads to contraction of s-electrons and an increasing their binding

energy

On the contrary, an indirect effect, which consists in the fact that the contraction of s- and

p1/2− electrons increases the screening of the charge of the nucleus, leads to a decrease in the

binding energy of d− electrons



Alkali Metal Hydrides (MeH)

KH RbH CsH FrH Eka FrH

2.2

2.3

2.4

2.5

2.6

R
e (

Å
)

Relativistic

Nonrelativistic

Equilibrium distance (Re)

Relativistic Qrel and nonrelativistic (Qnr) values
of alkali metal atomic charges ∆Q = Qnr − Qrel

MeH ZMe Nonrelativistic Relativistic ∆Q

LiH 3 0.473 0.473 0.0

NaH 11 0.421 0.421 0.0

KH 19 0.453 0.451 0.002

RbH 37 0.462 0.455 0.007

CsH 55 0.458 0.429 0.029

FrH 87 0.503 0.451 0.052

Eka FrH 119 0.533 0.388 0.145

In the relativistic case, the contribution of ionic bonding decreases in comparison with non-relativistic

one, that correlates with the increase of the ionization potential.

The calculations were carried out using the FSCC method by students of our group Amir Saetgaraev

and Daniil Usov.



Noble gas dimers
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When going from Rn2 to Og2, we see a strong relativistic effect that contradicts to the extrapolation

values for both equilibrium distances and dissociation energies.

The calculations were carried out using the FSCC method by Daniil Usov.
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The calculations were performed by Daniil Usov. The calculations were performed by Nikita Dulaev.

It is evident from the graphs that when moving from lighter homologous to Og, a strong increase in the

dissociation energy of dimers and the melting temperature of solids is observed.



Noble gases in the solid phase

Relativistic DFT calculations of noble gases in the FCC (face-centered cubic) solid state phase with

taking into account spin-orbit interaction and dispersion corrections.

Noble gases bond lengths (Å)

Functional Xe Rn Og

revPBE-D3BJ 4.497 4.614 4.432

PBEsol-D3BJ 4.267 4.297 4.277

revPBE-D4 4.535 4.635 4.443

PBEsol-D4 4.343 0.366 4.307

Experiment
a

4.336 – –

Noble gases cohesive energies (eV)

Functional Xe Rn Og

revPBE-D3BJ 0.191 0.237 0.338

PBEsol-D3BJ 0.194 0.285 0.585

revPBE-D4 0.158 0.199 0.298

PBEsol-D4 0.138 0.206 0.504

Experiment
a

0.164 – –

a
Schwalbe L. A. et al., J. Chem. Phys. 66, 4493 (1977).

(The calculations were performed by students of our group Anton Ryzhkov and Daniil Usov using

relativistic DFT method)

As can be seen from the table, the cohesive energy increases strongly with increasing of the atomic

number, which is a result of the strong relativistic effect

The large discrepancy of cohesive energies is probably due to the fact that the DFT theory is poorly

adapted to the calculations of dispersion interactions.



Electron density distribution
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There is no visible peak in the valence shell region. Electron density alone does not show any valence

shell structure



Nonrelativistic Electron Localization Function (ELF)

To describe the distribution and localization of electron density, it is better to use the so-called

electron localization function (ELF) [1]

Modification of the ELF for the case of strong relativistic effects was done in our paper [2]
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“Spin-orbit splitting in the 7p electronic shell becomes so large (∼10 eV) that Og is expected to show

uniform-gas-like behavior in the valence region” [1].

[1] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. v.92, 5397 (1990).

[2] I.I Tupitsyn et al., Optics and Spectroscopy, 130, 1022 (2022)

[3] P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett. 120, 053001

(2018).
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Orbital collapse. Double-well effective potential

The orbital collapse effect occurs in atoms with open d- and f-shells as a consequence of the fact

that the effective radial potential acting on the electrons of these shells contains two wells: a

deep narrow inner well and a shallow but wide outer well.

The effect of orbital collapse was predicted in [1], where it was shown, that the formation of a

double-well potential is a consequence by the sum of two contributions of different signs: the

screened potential of the nucleus and the centrifugal term, increasing quadratically with

increasing orbital quantum number l.

With small changes in the various parameters determining this effective potential, the average

radius and energy of the orbital can change by a factor of ten depending on which of the wells

it’s localised in.

This phenomenon can have a significant influence on the properties of free atoms and ions, as

well as atoms in molecules, clusters and crystals.

The orbital collapse effect was then considered in various papers and reviews (see [1-4] and

references therein).

[1] M. Goeppert Mayer, Phys. Rev. 60, 184 (1941)

[2] J. P. Connerade, Contemp. Phys. 19, 415 (1978)

[3] R. I. Karaziya, Usp. Fiz. Nauk 135, 79 (1981)

[4] J.-R Connerade and R.C. Kamatak, Handbook on the Physics and Chemistry of Rare Earths, v. 28, p. 1 (2000)



Orbital collapse. Double-well effective potential

The radial Dirac-Fock equation for f- and g- electrons (l=3,4) contains a large centrifugal term

l(l + 1)/r2 wich dominates at small r.

Vrad(r) = V (r) +
l(l + 1)

2r2
. (1)

As a result, it may turn out that the effective one-electron potential has two wells: a narrow deep

localized well and a tiny, but very wide, delocalized well.

It should be noted that well capacity is proportional to the width of the well and the square root of its

depth.
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Figure 1: Z=125. The effective radial potential for the shell is a = 5g7/2. The solid line is the

potential with exchange and the dashed line is the potential without exchange.



Orbital collapse. Double-well effective potential

The asymptotics of the local potential V (r) at large distances is purely Coulombic. The exchange

interaction of 5g-electrons localised in the outer well with the remaining electrons of the ion is

practically equal to zero due to the negligible overlapping of their wave functions.

Therefore the radial potential Vrad(r) in the asymptotic region for a neutral atom has the form

Vrad(r) = −
1

r
+

l(l + 1)

2r2
, r → ∞ . (2)

The minimum of the effective potential Vrad(r) in the outer well is at the point

rmin = l (l + 1) . (3)

The depth Vmin of this minimum is equal to

Vmin = − [2l(l + 1)]
−1

. (4)

The energy and mean radius of the electron in the outer well must be be close to the non-relativistic

hydrogen values of the energy εHnl and the mean radius ⟨r⟩Hnl with principal quantum number n and

orbital quantum number l.

ε
H
nl = −

1

2n2
a.u., ⟨r⟩Hnl =

1

2

[
3n

2 − l(l + 1)
]

a.u. (5)

For the 5g-electron (n = 5, l = 4) we have

rmin = 20 a.u., Vmin = −0.0250 a.u. (6)

and

ε
H
5g == −0.02000 a.u., ⟨r⟩H5g = 27.5 a.u. (7)



5g-orbital collapse in the SHE with Z=124 and Z=125

Table 2: The one-electron energies of the ε5g and the mean radii ⟨r⟩5g of the valence 5g7/2-orbital,

and total Dirac-Fock energies of the neutral atom with Z = 125. All values are given in atomic units

Z=125. [Og]8s28p1
1/26f

3
5/25g

1
7/2

Term (J) ε5g ⟨r⟩5g Total energy

1/2 −0.0200016 27.494 −64846.13530
3/2 −0.0200015 27.494 −64846.14377
5/2 −0.0200017 27.493 −64846.14376
7/2 −0.0200017 27.493 −64846.14376
9/2 −0.0200017 27.493 −64846.14376
11/2 −0.0200019 27.493 −64846.14377

13/2 −0.5387971 0.732 −64846.37848
15/2 −0.5348849 0.732 −64846.36810
17/2 −0.5367741 0.733 −64846.37428

1. I. I. Tupitsyn et al., Optics and Spectroscopy 131, 895 (2023)



5g-orbital collapse in the SHE with Z=124 and Z=125

Table 3: The one-electron energies ε5g and mean radii ⟨r⟩5g of the valence 5g7/2-orbital, and the

total energies of the neutral atom with Z = 124. All quantities are given in atomic units.

Z=124 [Og]8s28p1
1/26f

2
5/25g

1
7/2

Relativistic Nonrelativistic

Term (J) ε5g ⟨r⟩5g Term (LS) ε5g ⟨r⟩5g
0 −0.019961 27.567

1
S −1.920833 0.631

1 −0.019988 27.520
3
S −1.917294 0.630

2 −0.020000 27.497
5
S −1.912106 0.630

3 −0.019996 27.504
1
P −1.912189 0.630

4 −0.019998 27.499
3
P −1.913845 0.630

5 −0.020011 27.475
5
P −1.917600 0.631

6 −0.020020 27.457
1
D −1.912618 0.629

7 −0.240725 0.799
3
D −1.915445 0.630

8 −0.233805 0.799
5
D −1.921194 0.630

1. I. I. Tupitsyn et al., Optics and Spectroscopy 131, 895 (2023)

2. I. I. Tupitsyn, et al., Phys. Rev. A 109, 042807 (2024)



Thank You for Attention.



Introduction. Pekka Pyykkö periodic table

The table is taken from P. Pyykkö Chem. Rev. 112, 371 (2012).

Z = 118 7s27p6 Z = 119 − 121 8s 8p Z = 145 − 158 7d 6f 8p
Z = 122 − 124 8p 7d 6f Z = 159 − 166 7d 8p 9s
Z = 125 − 144 8p 7d 6f 5g Z = 167 − 172 7d 8p 9s 9p



Introduction. Methods

In our work, we used two independent theoretical calculation methods.

Configuration Interaction Dirac-Fock-Sturm method (CI-DFS)
At the first step, to obtain the one-electron wave functions for the occupied atomic shells, we use

the Dirac-Fock method. Then the DFS orbitals are obtained by solving the DFS equations for the

vacant shells. At the last step, the relativistic CI+MBPT method is used to obtain the

many-electron wave functions and the total energies.

Fock Space Coupled-Cluster method (FS-CC)
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21 (2021),

http://www.diracprogram.org. FS-CC method, in contrast to the one-configuration

coupled-cluster method is capable of providing not only the ground-state energy of an N-electron

system, but also an important fraction of system’s excitation spectrum, including ionization

potentials, electron affinities, etc.

To evaluate the QED correction we use the model QED operator approach[1].

In our recent work [2], the scope of the QEDMOD potential is extended to the region

120 ≤ Z ≤ 170.

1. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Comput.Phys.Commun. 189, 175 (2015)

2. A. V. Malyshev et al., Phys. Rev. A 106, 012806 (2022)



Ground state configurations

For Z = 126 the configurations with the lowest Dirac-Fcok (DF) energies within the
configuration average approximation are

Configuration Eav
DF [a.u.]

8p17d16f25g2
-66298.183666

8p16f35g2
.183121

8p16f45g1
.168137

8p26f25g2
.146963

8p17d26f15g2
.114149

The enrgies of the configurations 8p17d16f25g2
and 8p16f35g2

are almost the same.

8p26f25g2
Mann et al., 1970 (DF)

8p17d16f25g2
Fricke et al., 1977 (DFS)

8p16f45g1
Umemoto and Saito, 1997 (DF+PZ SIC)

8p16f35g2
(0.98) Nefedov, M. Trzhaskovskaya, 2006 (MCDF)

8p17d16f25g2
Zhou et al., 2017 (DF)



Ground electron configurations

Table 4: Ground state electron configurations

Core: [Og] 8s
2

Z Conf. J Ref[1] Ref[2]

125 5g
1
6f

2
7d

1
8p

1
8.5 5g

1
6f

3
8p

1
5g

1
6f

2
8p

2

126 5g
2
6f

2
7d

1
8p

1
10 5g

2
6f

2
7d

1
8p

1
5g

2
6f

3
8p

1

127 5g
3
6f

2
7d

1
8p

1
13.5 5g

3
6f

2
8p

2
5g

3
6f

2
8p

2

Core: [Og] 8s
2

8p
2
1/2

144 5g
18

6f
1
7d

3
4.0 5g

18
6f

1
7d

3
5g

17
6f

1
7d

3

145 5g
18

6f
3
7d

2
6.5 5g

18
6f

3
7d

2
5g

18
6f

3
7d

2

162 5g
18

6f
14

7d
8

4.0 5g
18

6f
14

7d
8

5g
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14
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7
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1

163 5g
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6f
14

7d
9

2.5 5g
18

6f
14

7d
9

5g
18

6f
14
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8
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1

164 5g
18

6f
14

7d
10

0.0 5g
18

6f
14

7d
10

5g
18

6f
14

7d
9
9s

1

165 5g
18

6f
14

7d
10

9s
1

0.5 5g
18

6f
14

5g
18

7d
10

9s
1

—

166 5g
18

6f
14
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10

9s
2

0.0 5g
18

6f
14

5g
18

7d
10
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2

—

[1] B. Fricke and G. Soff, Atomic Data and Nuclear Data Tables 19, 83 (1977).

[2] V.I. Nefedov, M. Trzhaskovskaya, Dokl. Phys. Chem. 408, 149 (2006).



Shannon entropy as a measure of localization of atomic valence states

According to the formula of K. Shannon [1], the amount of information is defined as:

S = −
N∑

i=1

pi ln pi (8)

where N is the number of random events, pi is the probability of the i-th event and

N∑
i=1

pi = 1 . (9)

The minimum value of S is reached for the deterministic event when one of the probabilities of pi is 1,

and the rest are zero. In this case, S = Smin = 0.

The maximum value of S is reached for an equally probable distribution pi = 1/N . Then,

Smax = ln(N)
0 ≤ S ≤ ln(N) (10)

For continuous distribution

S = −
∫

dr ln(ρ(r)) ρ(r) ,

∫
dr ρ(r) = 1 . (11)

The Shannon entropy increases with increasing delocalization of the valence states.

[1] C.E. Shannon, Bell Syst. Tech. J. 27, 379; 623 (1948).



Nonrelativistic Electron Localization Function (ELF)

The probability of finding two particles with the same spins simultaneously at positions 1 and 2 in a

multi-electron system is given by the following expression:

P2(r1, r2) =
∑

σ=±1/2

ρ2(r1 σ , r2 σ|r1 σ , r2 σ) , (12)

where ρ2 – reduced density matrix of the 2nd order

ρ2(x1 x2|x′
1 x

′
2) =

∑
ijkl

Γij,kl φ
∗
i (x1)φ

∗
j (x2)φk(x

′
1)φl(x

′
2) , x = (r, σ) . (13)

Here Γij,kl is second-order reduced density matrix (RMD2) in the basis φi(x)

Γij,kl =
1

2
⟨Ψ | a+

i a
+
j al ak | Ψ⟩ . (14)

The probability density to find two electrons with parallel spins in the same point is equal to zero

P2(r, r) = 0 . (15)



Nonrelativistic Electron Localization Function (ELF)

Consider the conditional density probability Px(r1, r2), which is equal to the probability density of

finding one electron at the point r + s, when another electron is at r

Px(r, r + s) =
P2(r, r + s)

ρ(r)
(16)

where ρ is the one-electron density.

We define D(r) as the first nonzero coefficient of the of the spherically averaged Taylor expansion of

the conditional density probability Px on the displacement s. The first expansion coefficients vanished

by the Pauli principle, the second is vanished after spherical averaging. Then

D(r) =
1

2
∆s Px(r, r + s)

∣∣∣
s=0

=
1

2
∆s

P2(r, r + s)

ρ(r)

∣∣∣∣
s=0

. (17)

The more highly localized is the reference electron, the smaller is the probability of finding another

electron near the reference point.

[1] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. v.92, 5397 (1990).



Nonrelativistic Electron Localization Function (ELF)

The electron localization function (ELF) characterize the degree of localization of electrons in atoms

and molecules. ELF was introduced in the quantum chemistry in the paper [1]

ELF(r) =

(
1 +

[
D(r)

D0(r)

]2)−1

, (18)

In the Hartree-Fock approximation

D(r) =
1

2

[
τ −

1

4

|∇ρ(r)|2

ρ(r)

]
, and τ =

∑
i,σ

|∇φiσ(r)|2 . (19)

Here ρ is total density and τ the kinetic energy density.

D0(r) corresponds to a uniform electron gas (Thomas-Fermi) kinetic energy density

D0(r) =
3

10
(3π

2
)
2/3

ρ
5/3

(r) . (20)

The ELF values lie between zero and one 0 ≤ ELF ≤ 1. Small values are typical for the region

between two electron shells. In a homogeneous electron gas ELF = 0.5.

[1] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. v.92, 5397 (1990).



Relativistic Electron Localization Function (ELF)

D(r) =
∑

λ=1,2

[
W

λ
(r)T

λ
(r) −

1

8

∣∣∇ρλ(r)
∣∣2

ρ(r)

]
, (21)

where ρ(r) – total electron density

ρ(r) =
∑

λ=1,2

ρ
λ
(r) , ρ

λ
(r) =

4π

r2

∑
a

qa

{
P 2

a (r), λ = 1,

Q2
a(r), λ = 2 .

(22)

Tλ(r) in formula (21) is the relativistic analogue of the non-relativistic kinetic energy density

T
λ
(r) =

∑
a

qa t
λ
a(r) , t

λ
a(r) =

1

2

1

2ja + 1

∑
µa,σ

|∇ϕ
λ
aµa

(r, σ)|2 (23)

and Wλ(r) is a weight function that has the form

W
λ
(r) =

ρλ(r)

ρ(r)
. (24)

I.I Tupitsyn et al., Optics and Spectroscopy, 130, 1022 (2022)



Orbital collapse. Double-well effective potential

For the 4f-electron (n=4,l=3) of a neutral atom localised in the outer well, we obtain

rmin = 12 a.u., Vmin ≃ −0.0417 a.u. (25)

and

ε
H
4f = −0.03125 a.u., ⟨r⟩H4f = 18.0 a.u. (26)

For the 5g-electron (n = 5, l = 4) we have

rmin = 20 a.u., Vmin = −0.0250 a.u. (27)

and

ε
H
5g == −0.02000 a.u., ⟨r⟩H5g = 27.5 a.u. (28)



5g-orbital collapse in the SHE with Z=124 and Z=125

Table 5: List of values of total angular momentum J (relativistic terms) and number K of similar

(identical) terms of configurations [Og]8s28p1
1/26f

3
5/25g

1
7/2, Z = 125 and

[Og]8s28p1
1/26f

2
5/25g

1
7/2, Z = 124 of atoms with Z=125 and Z=124 respectively

Z=125 Z=124

Term J K Term J K
1/2 2 0 1

3/2 5 1 3

5/2 6 2 4

7/2 6 3 5

9/2 6 4 5

11/2 5 5 4

13/2 3 6 3

15/2 2 7 2

17/2 1 8 1



Orbital collapse

The radial Dirac-Fock equation for f- and g- electrons (l=3,4) contains a large centrifugal term

l(l + 1)/r2 wich dominates at small r. As a result, it may turn out that the effective one-electron

potential has two wells: a narrow deep localized well and a tiny, but very wide, delocalized well.

This leads to the fact that with small changes in the atomic parameters the delocalized solution can

collapse into a highly localized one [1], for example, depending on the value of total angular

momentum J.
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[1] Griffin et al, Phys Rev 177, 62. (1969)



Orbital collapse. Dirac-Fock double solutions

In order to obtain two solution we use the following procedure.

We introduce the parameter α as a multiplier in the exchange interaction and represent the

Dirac-Fock operator in the form of

V̂DF(r) = VH + α V̂x , (29)

where VH – Hartree potential with self-interaction correction, and V̂x – exchange operator.

In the first step, we adjust the parameter a in order to obtain the required solution. Thus, for

example, α = 0, as a rule, gives us a solution localised in the outer well.

At this stage we use the eigenfunctions of the Dirac operator with the modified Gaspar potential

[1] as an initial approximation. The modification has been done in [2] to take into account

self-interaction correction.

VG(r) = −
Z

r
+

Ne − 1

r

(
1 −

e−λr

1 + Ar

)
, (30)

where λ = 0.2075Z1/3
, A = 1.19Z1/3

, and Ne is the number of electrons.

Then we change the parameter α in order to go directly or gradually to the value α = 1, using

as an initial approximation the wave functions obtained at the previous value of α.

[1] R. Gaspar. J. Chem. Phys., 20, 1863 (1952).

[2] A. E. S. Green. Advances in Quantum Chemistry, 7, 221 (1973).



Orbital collapse. Two solutions for 6f-electrons (Z=148)

Z=148. Configuration: [Og]8s2 8p
2
1/2 5g

18
7d3/2 6f

6
5/2 6f

1
7/2

Table 6: 6f-orbital localized in the inner well

Level J Total energy ε6f <r>

2.0 -115208.5829 -0.10466 1.570

3.0 -115208.6011 -0.11633 1.566

4.0 -115208.6145 -0.12470 1.574

5.0 -115208.5860 -0.10774 1.562

Table 7: 6f-orbital localized in the outer well

Level J Total energy ε6f′ <r>

2.0 -115208.6203 -0.0309 18.206

3.0 -115208.6208 -0.0314 17.798

4.0 -115208.6210 -0.0317 17.594

5.0 -115208.6205 -0.0311 18.058



No orbital collapse of the 6f-electrons

There is no collapse of the 6f-orbital for the elements of 8th period, since the 6f-radial potential has

only one inner well.
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