
Лаборатория ядерных проблем им. В. П. Джелепова

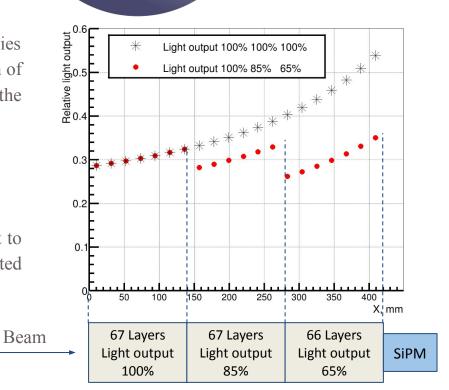
Объединенный институт ядерных исследований

Improvement of the energy resolution of ECal SPD

I. Zimin, V. Baranov, O. P. Gavrishchuk, E. Ginya, N. Huseynov, Yu. A. Kulchitsky, A. Maltsev

Problem & possible solutions

Лаборатория ядерных проблем им. В. П. Джелепова

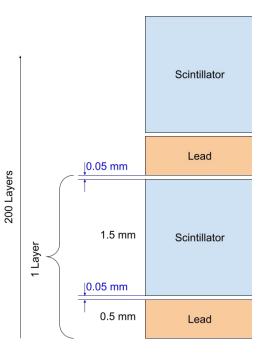

Объединенный институт ядерных исследований

Now, it is impossible to buy fibers from famous companies for a good price. Russian-made fibers have an attenuation length of 600 mm. This leads to a deterioration in the performance of the detector.

Two possible solutions:

- Improving the characteristics of fibers.
- Using sets of scintillator with different light output to align the light collection from the module (suggested by Oleg Gavrishchuk).

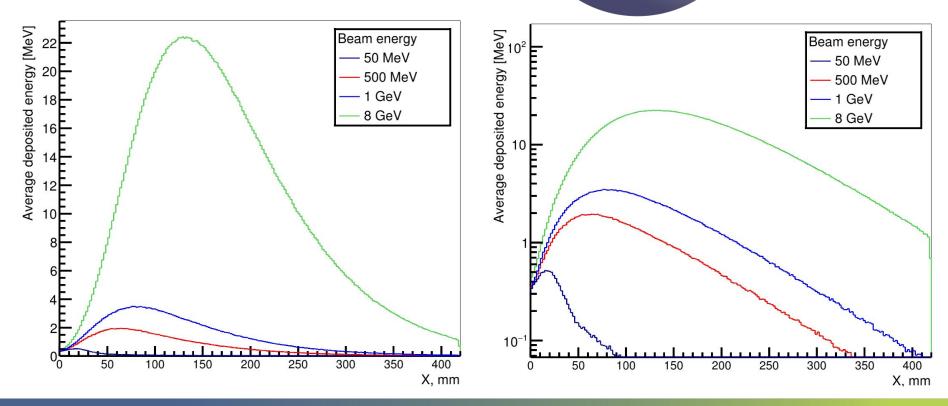
Our goal was to check the second method.



Monte Carlo model

Лаборатория ядерных проблем им. В. П. Джелепова

- Monte Carlo model: Geant4 (QGSP_BERT, G4EmStandardPhysics_option4).
- The same geometry as the real module. Except transverse size is 400x400 mm².
- Beam: electrons and gamma-ray, energy from 0.05 GeV to 8 GeV.
- The Geant4 simulation is only on the level of particle-material interaction.
- For the estimation of the optical and electronics effect on the module characteristics we used empirical methods.

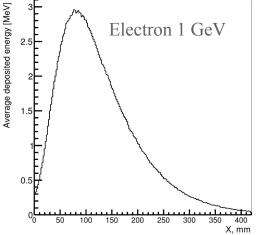


Longitudinal energy distributions for electrons

Лаборатория ядерных проблем им. В. П. Джелепова

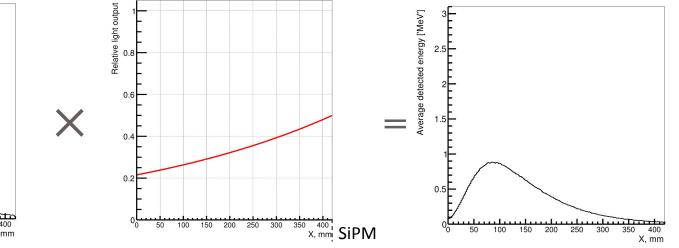
Attenuation of the signal

Лаборатория ядерных проблем им. В. П. Джелепова



Объединенный институт ядерных исследований

$$A = 0.5A_0 e^{-(L-x)/\lambda}$$


A - number of detected photons, A_0 - number of photons captured at a point x , λ - absorption length, L - WLS fiber ongitudinal energy distribution

Longitudinal energy distribution. Beam energy 1 GeV. The light attenuation (L) length = infinity

The light attenuation (L) length = 500 mm

Longitudinal energy distribution. Beam energy 1 GeV. The light attenuation (L) length = 500 mm

Energy distributions. Electron 1 GeV

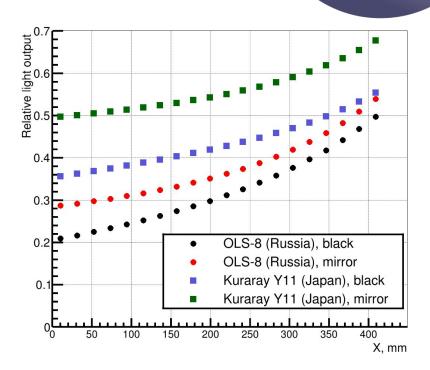
Лаборатория ядерных проблем им. В. П. Джелепова

	Infinite	2000 mm	1000 mm	500 mm
E, "MeV"	129.66±0.05	112.11±0.05	96.82±0.05	72.37±0.05
σ, "MeV"	4.84±0.04	4.26±0.04	3.97±0.04	3.70±0.05
σ/Ε	3.73±0.03%	3.80±0.03%	4.10±0.05%	5.12±0.07%
chi2/ndf	22/25	28/20	18/17	17/14

Лаборатория ядерных проблем им. В. П. Джелепова

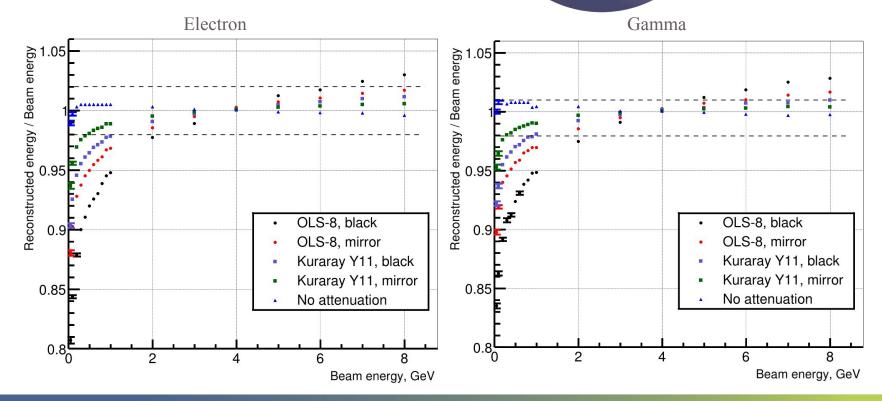
Объединенный институт ядерных исследований

Simulation based on experimental data


Attenuation of the signal, experimental data

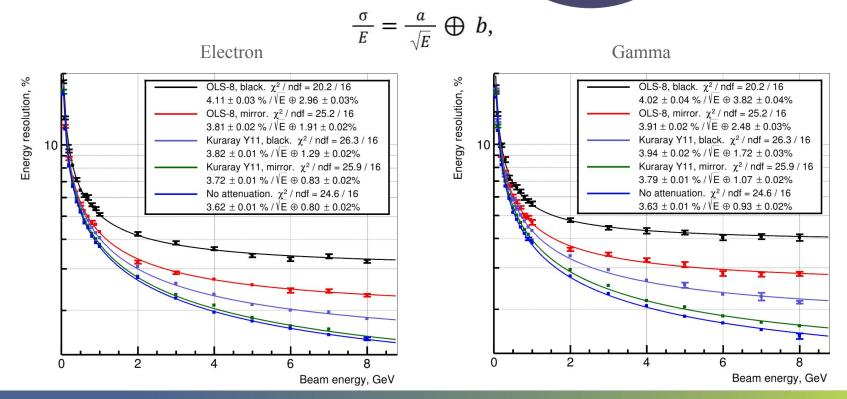
Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований


Obtained with data measured by Vladimir Baranov and Eduard Ginya

Linearity. Simulation based on the experimental data.

Лаборатория ядерных проблем им. В. П. Джелепова



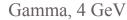
Resolution. Simulation based on the experimental data.

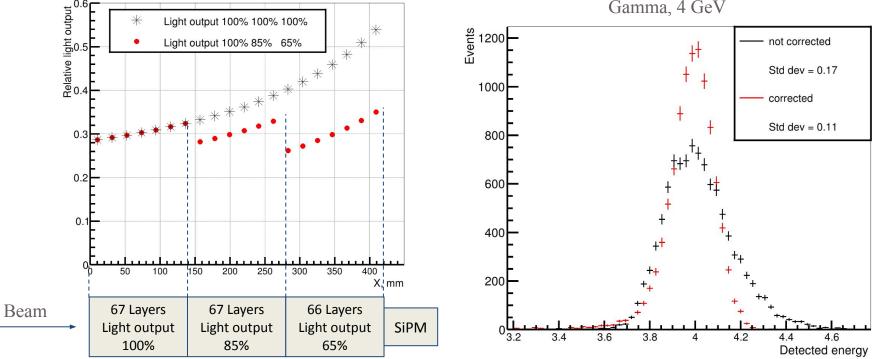
Лаборатория ядерных проблем им. В. П. Джелепова

Лаборатория ядерных проблем им. В. П. Джелепова

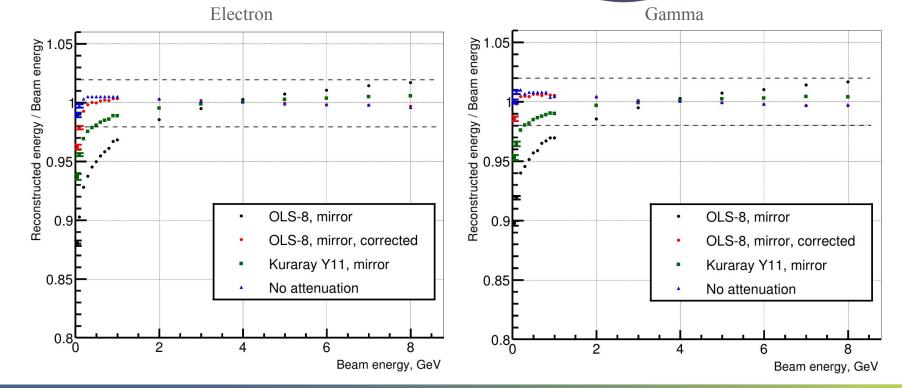
Объединенный институт ядерных исследований

Correction


Correction of the attenuation of the signal


OSL-8 Mirror

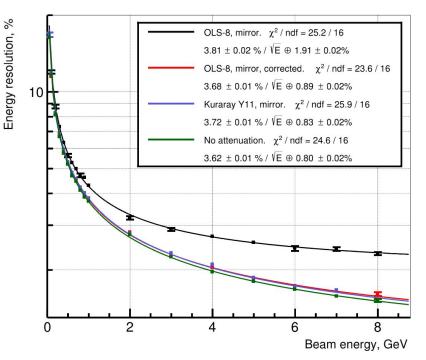
Лаборатория ядерных проблем им. В. П. Джелепова

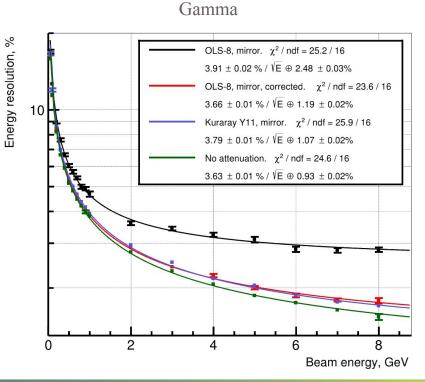


Linearity. Correction.

Лаборатория ядерных проблем им. В. П. Джелепова

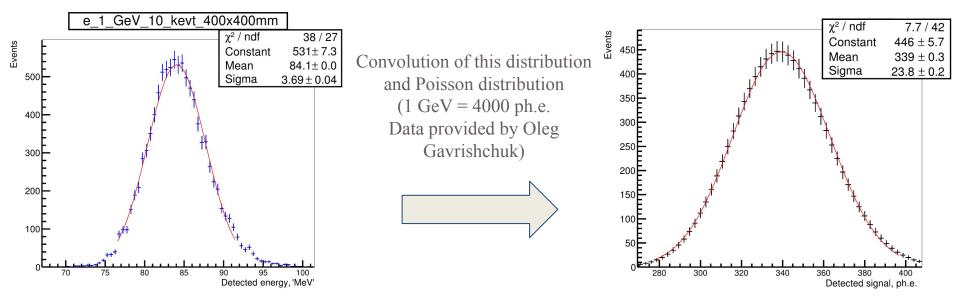
Resolution. Correction.




Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Electron

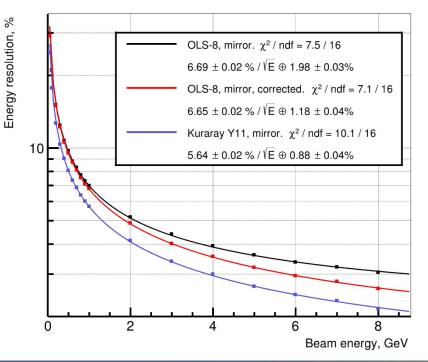


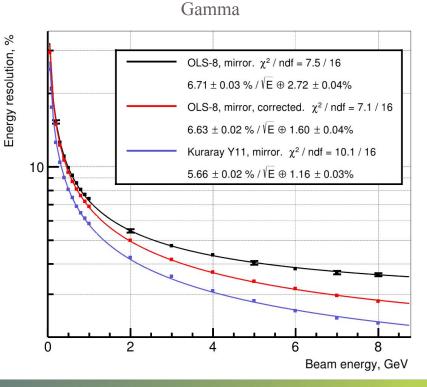
Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Optical and electronics effects

Resolution. Correction. Scintillation.




Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Electron

17

sults			Лаборатория ядерных проблем им. В. П. Джелепова	Объединенны институт ядер исследований						
Linearity										
WH C 1 'C	Elec	etron	Gamma							
WLS shifter	from	to	from	to						
OSL-8 (Not corrected)	2 GeV	8 GeV	2 GeV	8 GeV						
OSL-8 (Corrected)	<u>0.1 GeV</u>	<u>8 GeV</u>	<u>0.05 GeV</u>	<u>8 GeV</u>						
Kuraray Y11 (Not corrected)	0.4 GeV	8 GeV	0.3 GeV	8 GeV						
	Re	solution								
	Electron		Gamma							
WLS shifter	a, %	b, %	a, %	b, %						
OSL-8 (Not corrected)	6.63±0.02	2.06±0.02	6.71±0.03	2.72±0.04						
OSL-8 (Corrected)	<u>6.66±0.02</u>	<u>1.12±0.04</u>	<u>6.63±0.02</u>	<u>1.60±0.04</u>						
Kuraray Y11 (Not corrected)	5.64±0.02	0.88±0.04	5.66±0.02	1.16±0.03						

Verification of the Monte Carlo model

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Verification

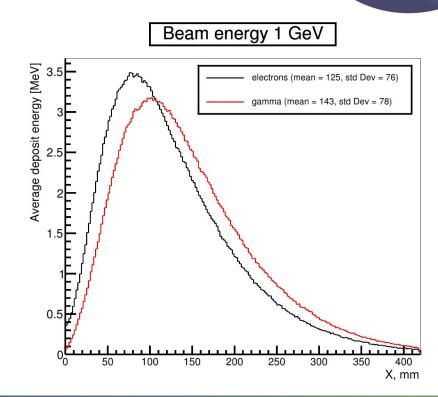
Conclusions

Лаборатория ядерных проблем им. В. П. Джелепова

- A Monte Carlo model of the ECal was made (Geant4).
- Calculated linearity and energy resolution of the ECal with Kuraray Y11 and OSL-8 WLS fibers. Showed that the characteristics of the ECal module with Kuraray Y11 is better than with OSL-8.
- Checked the method when using sets of scintillation plates with different light output.
- Showed that the method provides the linearity of the ECal module with fiber OSL-8 and plate sets 100, 85, 65% from 0.1 GeV to 8 GeV.
- Showed that the method improves the energy resolution of the ECal module with fiber OSL-8 and plate sets 100, 85, 65%. For electrons a = 6.66±0.02, b = 1.12±0.04 and for gamma a = 6.63±0.02, b = 1.60 ±0.04. Constant members have decreased about 45%.

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

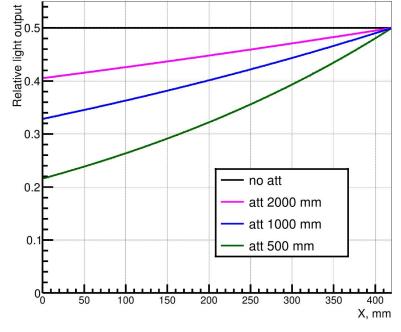

Thank you for your attention!

Longitudinal energy distributions, electrons vs gamma

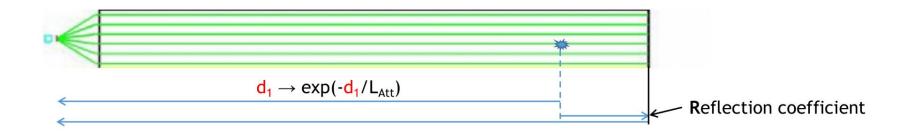
Лаборатория ядерных проблем им. В. П. Джелепова

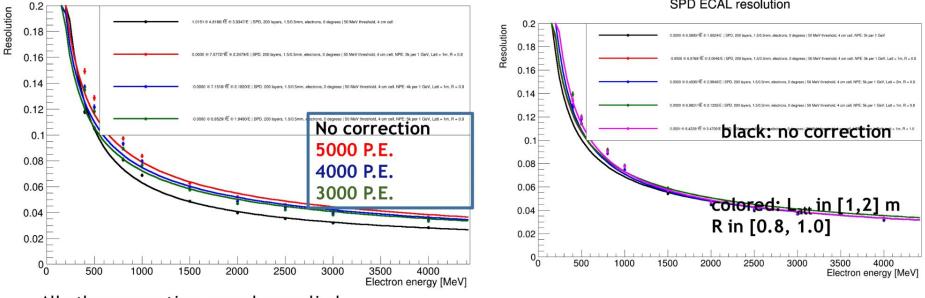
Longitudinal energy distributions for different attenuation lengths




Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований


Electron 1 GeV


Setup details

- 200 layers of shashlyk: 0.5 mm Pb/1.5 mm scintillator
- 50 MeV cell energy threshold, 4x4 cm cell
- L_{Att}= 1.0 m, R = 0.9, 5000 photoelectrons per 1 GeV in scintillator

Effect of corrections on ECAL resolution

SPD ECAL resolution

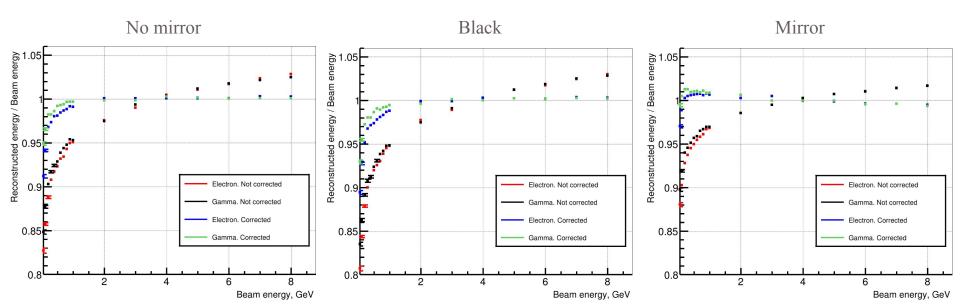
SPD ECAL resolution

All other corrections are also applied

Bigger contribution is from photoelectron statistics

Значения х² для разных степеней свободы

Лаборатория ядерных проблем им. В. П. Джелепова


Число степеней свободы <i>к</i>	Уровень значимости а						
	0,01	0,025	0.05	0,95	0,975	0.99	
1	6.6	5.0	3.8	0.0039	0.00098	0.00016	
2	9.2	7.4	6.0	0.103	0.051	0.020	
3	11.3	9.4	7.8	0.352	0.216	0.115	
4	13.3	11.1	9.5	0.711	0.484	0.297	
5	15.1	12.8	11.1	1.15	0.831	0.554	
6	16.8	14.4	12.6	1.64	1.24	0.872	
7	18.5	16.0	14.1	2.17	1.69	1.24	
8	20.1	17.5	15.5	2.73	2.18	1.65	
9	21.7	19.0	16.9	3.33	2.70	2.09	
10	23.2	20.5	18.3	3.94	3.25	2.56	

Linearity. Correction. Electron vs gamma.

Лаборатория ядерных проблем им. В. П. Джелепова

Resolution. Correction. Electron vs gamma

8

Beam energy, GeV

6

Energy resolution

10

2

6

8

Beam energy, GeV

Лаборатория ядерных проблем им. В. П. Джелепова

2

0

Объединенный институт ядерных исследований

No mirror Black Energy resolution Energy resolution Electron. Not corrected. χ^2 / ndf = 22.050250 / 16 Electron. Not corrected. χ^2 / ndf = 25.721819 / 16 Electron. Not corrected. χ^2 / ndf = 22.611179 / 16 0.038838 ± 0.000244 /√E ⊕ 0.028224 ± 0.000276 Gamma. Not corrected. χ^2 / ndf = 22.378242 / 16 Gamma. Not corrected. χ^2 / ndf = 20.206868 / 16 Gamma. Not corrected. χ^2 / ndf = 25.151100 / 16 0.040149 ± 0.000345 /√E ⊕ 0.035247 ± 0.000432 0.039075 ± 0.000241 /VE ⊕ 0.024833 ± 0.000319 Electron. Corrected. χ^2 / ndf = 19.778746 / 16 10 Electron. Corrected. χ^2 / ndf = 24.180255 / 16 10 Electron. Corrected. χ^2 / ndf = 24.415704 / 16 Gamma. Corrected. x² / ndf = 25.145170 / 16 Gamma. Corrected. x² / ndf = 23.144520 / 16 Gamma. Corrected. χ^2 / ndf = 22.267093 / 16 $0.038614 \pm 0.000126 \, / \overline{\mathsf{VE}} \oplus 0.009497 \pm 0.000216$ $0.036630 \pm 0.000131 \ / VE \oplus 0.014609 \pm 0.000234$

Λ

2

0

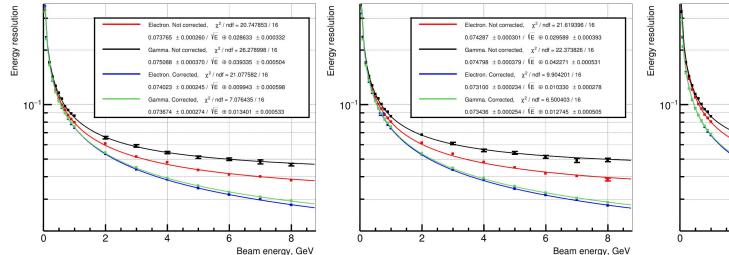
Mirror

8

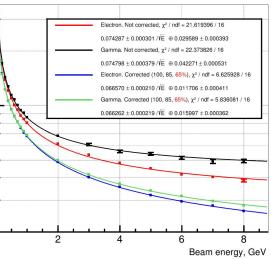
Beam energy, GeV

6

Resolution. Correction. Electron vs gamma + scintillation


Black

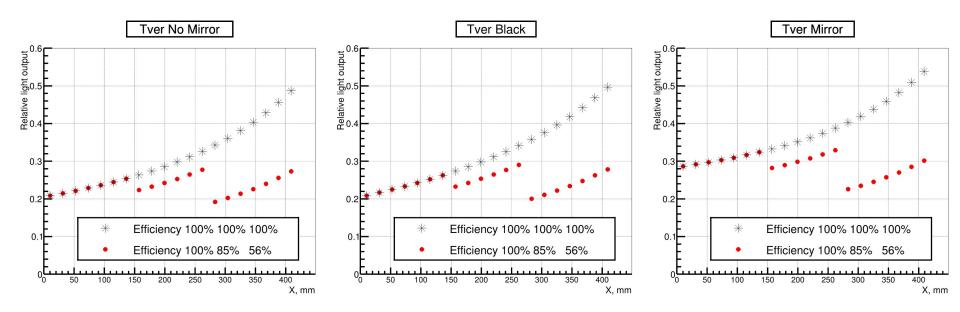
Лаборатория ядерных проблем им. В. П. Джелепова



Объединенный институт ядерных исследований

No mirror

Mirror



Correction of the attenuation of the signal

Лаборатория ядерных проблем им. В. П. Джелепова

