

Advanced Studies of Systems of New-Generation Accelerators and Colliders for Fundamental and Applied Research 08-2-1127-2016

for Nuclear Research

SCIENCE BRINGS NATIONS

TOGETHER

Creating Test Benches to Check Individual Systems of the MSC-230 Cyclotron 08-2-1127-1-2024/2028

Creating Test Benches to Check Individual Systems of the MSC-230 Cyclotron

Sergey Yakovenko

Dzhelepov Laboratory of Nuclear Problems

61th meeting of the PAC for Nuclear Physics, June 19, 2025

Main tasks of the project

The project is aimed at creating the medical superconducting cyclotron MSC-230 and the infrastructure for:

- Carrying out fundamental and applied research in the field of radiation biology and medicine, first of all the FLASH therapy method;
 Training and improving qualifications of specialists in the field of radiation biology and medicine;
- 3. Creating necessary conditions for the introduction of the latest technologies in he field of proton therapy of oncological diseases into clinical practice.

- Proton therapy at JINR
- The MSC-230 Description and Status
- MSC-230 test benches
- Infrastructure for radiobiological researches
- Expected results

Proton therapy at JINR

Proton therapy at JINR

- Milestones of activity:
- 1967 the beginning of the research on proton
- therapy;
- 1968 1974 first 84 patients treated with protons;
- 1975 –1986 upgrading of the accelerator and construction of a multi-room Medico-Technical Complex for hadron therapy;
- 1987-1996 treating of 40 patients with protons, mostly with uterine cervix cancer;
- 1999, December inauguration of a Radiological Department of the Dubna hospital;
- 1999-2019, October treating of about 1300 patients. Realization of a technique for 3D conformal proton radiotherapy.

Treatment room No 1 for 3D conformal proton therapy of tumors seated in the head, neck, and trunk

Proton therapy at JINR

УТВЕРЖДАЮ

Директор ОИЯИ академик Г.В. Трубников « » марта 2021 года

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

НА РАЗРАБОТКУ УСТАНОВКИ ДЛЯ ВЫСОКОЭФФЕКТИВНОЙ ЛУЧЕВОЙ ТЕРАПИИ ПРОТОННЫМ ПУЧКОМ

The high effective proton therapy facility technical task

совокупности осуществлять планирование и проведение 3-х мерной конформной протонной лучевой терапии на широком однородном пучке и обеспечивать высокую степень гарантии качества подведения дозы к облучаемой мишени.

С развитием проекта и при участии специализированной медицинской организации может быть рассмогрена возможность применения технологии облучения методом карандациого пучка, а также размещение системы гантири, позволяющей вращать пучок вокруг пациента в диналово не менее чем от 0° до 220°.

Разрабатываемая установка должна иметь технические характеристики, приведенные в таблице.

Таблица. Технические характеристики установки

Наименование	Единица измерения	Диапазон допустимых значений								
Латеральная полутень (80%-20%) с учетом многократного рассеяния в теле пациента	СМ	1, не более								
Максимальный пробег в теле пациента	CM	30, не менее								
Максимальный размер поля облучения, при допустимом наложении полей	MM X MM	400 x 400								
Равномерность дозы по облучаемому объему опухоли	%	± 2,5, не более								
Мощность дозы минимальная	Гр/мин	0,5, не менес								
Мощность дозы максимальная за время 0.1 сек. и менее	Гр/сек.	50 и более расчётные 200 и более (для локализаций небольших объемов)								
Ускоритель п	ротонов									
Энергия пучка	MaB	От 70 до 230								
Относительная погрешность энергии протонного	%	± 0,15, не более								
Интенсивность выведенного пучка (непрерывный режим)	c-1	6-1012								
Интенсивность выведенного пучка в флэш- режиме (импульсный режим)	c-1	6-1013								
Точность регулировки интенсивности пучка от номинального значения	%	± 2, не более								
Диалазон регулировки интенсивности	раз	до 1000								
Средняя потребляемая мощность	кВт	200								
Диаметр ускорителя	м	4								
Радиальный вертикальный эмиттанс на выходе из ускорителя	π ·mm ·mrad	< 10								
Вертикальный эмиттанс на выходе из ускорителя	π ·mm ·mrad	< 5								
Размер выведенного пучка (рад верт.) (2σ)	MM	3-2								
Система транспортировки и формиро	вания пучка в ш	татном режиме								
Метод наведения пучка на мишень	-	Горизонтальный пучок с 3-D сканированием								
Длина канала выпуска и формирование пучка	м	5, не более								

Extracted beam	1
current,µA	
(continuous mode)	
Extracted beam	10
current –1 µA	
(pulsed mode)	

2321

Main paramet	ters
Magnet type	SC coil,
	warm yoke
Ion source	PIG
Final energy, MeV	230
Weight, tonnes	130
Dimensions	1900 × 3860
(height×width), mm	
Magnetic field (R_0/R_{extr}), T	1.7/2.15
A*Turn number	290 000
RF frequency, MHz	106.5
Harmonic number	4
Number of RF cavities	4
RF power, kW	60
Number of turns	500
Beam intensity, µA	10

MSC-230 layout (3D-model)

View of the MSC-230: 1- magnet yoke, 2 – superconducting coil and cryostat, 3 – lifting system, 4 – tie rods, 5 – refrigerator, 6 – beam extraction tunnel

MSC-230 systems	Responsible
1. Magnet yok and lifting system	NIEFA
2. Cryogenic system and superconducting coils	JINR
3. RF system	JINR,NIEFA
4. Extraction system	JINR, NIEFA
5. Proton source	JINR, NIEFA
6. Power supply system	NIEFA
7. Vacuum system	JINR, NIEFA
8. Beam diagnostic system	NIEFA
9. Control system	JINR
10. Cooling system	NIEFA
11. Magnetic field measurement system	JINR

Magnet yok and lifting system are being manufactured. Will be completed in December 2025

Cryogenic system and superconducting coils

1 – cryostat; 2 - superconducting coils; 3 – thermal shield;
 4 – siphon; 5 – refrigerator.

The technology with the use of a hollow composite superconductor co proposed at the VBLHEP JINR and well-proven in the magnets of the Nuclotron synchrotron, was chosen as the basis for the manufacture of the coils.

 1 - a tube with a channel for cooling; 2 - superconducting wire;
 3 - polyimide tape; 4 - glass fiber tape,

Cryogenic system and superconducting coils

The protection of the magnet from overheating during quench is solved by sectioning the solenoid and uniform energy release throughout the winding. For this, the winding is electrically divided into sections. The energy stored in the magnet is dissipated both on the external resistance and on 36 shunts - heaters located between the winding layers of the upper and lower coils. The external resistance Re = 0.509 Ohm limits the maximum voltage to ground to ± 250 V. The maximum calculated winding heating temperature as a result of quench is 97 K. The time constant of the energy

The technology with the use of a hollow composite superconductor co proposed at the VBLHEP JINR and well-proven in the magnets of the Nuclotron synchrotron, was chosen as the basis for the manufacture of the coils.

 a tube with a channel for cooling; 2 - superconducting wire;
 polyimide tape; 4 - glass fiber tape,

evacuation process will be 17.9 s.

Cryogenic system parameters

Parameter name	Unit	Value
Solenoid inner diameter	m	2.56
Solenoid outer diameter	m	2.67
Number of coils	pcs	2
Distance between coils	m	0.14
Solenoid height	m	0.35
Emax	MJ	3.3
VLHe		7
L	Н	27.4
SC coil conductor	Cu + Nb-Ti	
Insulating vacuum space pressure	Pa	≤ 1 x 10 ⁻³
Operating current	А	510

Cryogenic system and superconducting coils

Winding equipment are being manufactured. Will be completed in September 2025

Cryogenic system and superconducting coils

The key element of cryogenic system - refrigerator is ready for testing

The design of the resonance system is being completed and the production of individual units has begun

RF generator

The high frequency generator is being manufactured by Hefei CAS Ion Medical and Technical Devices Co., Ltd. Delivery date is December 2025.

TIMELINE OF MSC-230 CONSTRUCTION

	202	2024														2025																		
	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Final engineering design																																		
Magnet yok and lifting system																																		
Cryogenic system		ľ										ľ															ľ	ľ	Ì	ľ				
RF system																																		
Proton source																																		
Vacuum system																				1														
Beam diagnostic system																																		
Extraction system																																		
Control system																					1			1										
Magnetic field measurement system																																		
Power supply and cooling systems																																		
Final assembling																																		
Commissioning																																		

The cryogenic system test bench

The hall sensor calibration test bench

Calibration magnet

New poles

Calculated magnetization curve of the calibration magnet of the DLNP with new poles and the measured magnetization curve of the calibration magnet of the LNR

MSC-230 test bench

Infrastructure for radiobiological researches

- 2. Пильтовая искорителя
- 3. Кабина (шибокий пичок)
- 4. Пильтовая кабины
- 5. Помещение передержки коллиматоров и болюсов
- 6. Источники питания искорителя и канала, вакцимное оборидование
- 7. Система ВЧ искорителя
- 8. Дозиметрическая
- 9. Компрессорная
- 10. Комната подготовки образцов к обличению
- 11 Склпд
- Электроаборудование СБИС и АСРК (в пультовай ускорителя)
 Система водоподготовки и охлаждения (крыша бункера или вне корпуса №5)

Creating Test Benches to Check Individua Systems of the MSC-230 Cyclotron S.Yakovenko

2025: Creation of the test benches for cyclotron elements test, the cyclotron MSC-230 assembling, design of the beam transport channel to the treatment room, design of the treatment room.

2026: The MSC-230 commissioning. Manufacturing of the transport channel and treatment room with a control panel.

2027: Radiobiological studies, medical certification of the proton beam and dosimetry equipment.

Thank you for your attention.