Alpha-decay and spontaneous fission of superheavy elements in the DNS approach

Ivan Rogov BLTP, JINR

61st meeting of the PAC for Nuclear Physics

Dubna, 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Dinuclear system (DNS)

Charge asymmetry:

$$\eta_Z = rac{Z_H - Z_L}{Z_H + Z_L}, \,\, Z_{H,L}$$
 – charge number

イロト イヨト イヨト イヨ

Dinuclear system (DNS)

DNS preformation

- Movement in η_Z coordinate
- Spectroscopic factor (preformation probability) S_L

DNS decay

- Movement in R coordinate
- Penetration probability P_L

The system is described by stationary wave function $\Psi(\eta_Z)$:

 $\hat{H}\Psi_n(\eta_Z) = E_n \Psi_n(\eta_Z),$

где

$$\hat{H} = \hat{T}_{\eta_Z} + U(\eta_Z)$$

Kinetic energy

Potential energy

[G. Adamian et al. Int. J. Mod. Phys. A, 1996]

$$\hat{T}_{\eta_Z} = \frac{\hbar^2}{2} \frac{\partial}{\partial \eta_Z} B_{\eta_Z}^{-1} \frac{\partial}{\partial \eta_Z}$$

$$U(R, \eta_Z) = V(R, \eta_Z) - (Q_M - Q_L - Q_H)$$
$$V(R, \eta_Z) = V_{\rm C}(R, \eta_Z) + V_N(R, \eta_Z) + V_r(R, \eta_Z)$$

イロト イヨト イヨト

Driving potential

 $a_0 = 0.47 - 0.56 \text{ fm}; \quad r_0 = 1.00 - 1.16 \text{ fm}$

• • • • • • • • • • •

▶ < ⊒

Formation of the driving potential

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Formation of the driving potential

 $\eta_Z \to x = 1 - \eta_Z; \quad \Delta = 1/Z;$

< E

Driving potential characteristics

6/20

Wave function

7/20

æ

・ロト ・回 ト ・ヨト ・ヨト

Half-lives

$$S_{L} = \int_{\eta_{Z}(Z_{L}) - \Delta}^{\eta_{Z}(Z_{L}) - \Delta} |\Psi(\eta_{Z})|^{2} d\eta_{Z}$$

$$\Delta = 1/Z$$

$$\Delta = 1/Z$$

$$\Gamma_{L} = \frac{\hbar\omega_{0}}{\pi} S_{L}P_{L}, \ T_{1/2} = \frac{\hbar \ln 2}{\Gamma_{L}}$$

$$T_{1/2} = \frac{\pi \ln 2}{\omega_{0}S_{L}P_{L}}$$

$$P_{L} = \left(1 + \exp\left[\frac{2}{\hbar}\int_{R_{0}}^{R_{J^{1}}} \sqrt{2\mu(V(R,\eta_{Z}) - Q)} dR\right]\right)^{-1}$$

8/20

Spectroscopic factor for SF

The SF decay width is

$$\Gamma_{SF} = \sum_{L} \Gamma_{L} = \frac{\hbar\omega_{0}}{\pi} \sum_{L} S_{L} P_{L}$$

For SF region $P_L = 1$, so:

$$\Gamma_{SF} = \frac{\hbar\omega_0}{\pi} \sum_L S_L = \frac{\hbar\omega_0}{\pi} S_{SF},$$

and the spectroscopic factor S_{SF} for SF:

$$S_{SF} = \sum_{L} S_{L},$$

Even-even nuclei half-lives

10 / 20

э

イロト イボト イヨト イヨト

Driving potential characteristics

э

▶ ∢ ⊒

• • • • • • • • • • •

Driving potential characteristics

 $Q = (Q_M - Q_L - Q_H)$, for η_Z at U_b

Even-odd nuclei half-lives

▶ < ⊒

HF origins. Inertia parameter influence

Driving potential influence

э

イロト イヨト イヨト イヨ

	Ω	S_{lpha}	$S^{\Omega=0}_{\alpha}$	$T_{1/2}$, s	$T_{1/2}^{\Omega=0}, { m s}$	$T_{1/2}^{\text{est}}, \text{s}$
$^{243}\mathrm{Cm}$	5/2	0.0526	0.0707	2.57×10^{18}	1.02×10^{14}	2.75×10^{14}
$^{245}\mathrm{Cm}$	7/2	0.0428	0.0947	1.65×10^{20}	7.34×10^{14}	4.35×10^{14}
243 Fm	7/2	0.0712	0.0904	3.51	3.14×10^{-4}	2.08×10^{-4}
255 Fm	7/2	0.0527	0.0816	3.01×10^{11}	1.62×10^6	1.16×10^6
$^{257}\mathrm{Fm}$	9/2	0.0481	0.0888	4.13×10^9	1.19	4.02
255 Rf	9/2	0.0691	0.0930	2.00	2.95×10^{-3}	4.14×10^{-4}
$^{257}\mathrm{Rf}$	1/2	0.0893	0.0918	$1.11 imes 10^1$	3.99×10^{-2}	1.05×10^{-2}

э

メロト メロト メヨト メヨト

$$T_{1/2} = F \cdot T_{1/2}(\Omega = 0), F = \exp\left[\frac{c \cdot \Omega(\Omega + 1)}{\sqrt{(B^{-1})_{\eta_{Z_{\alpha}}}}}\right], \ c = 0.086 \ \mathrm{MeV}^{-1/2} \mathrm{s}^{-1}$$

Nucleus	Ω	$T_{1/2}(\Omega = 0)$ (s)	F	$T_{1/2}^{\rm fit}~({\rm s})$	$T_{1/2}^{exp}$ (s)
$^{243}\mathrm{Cm}$	5/2	1.02×10^{14}	3.47×10^3	3.54×10^{17}	2.57×10^{18}
243 Fm	7/2	3.14×10^{-4}	1.20×10^4	3.77	4.64
$^{245}\mathrm{Cm}$	7/2	7.34×10^{14}	2.63×10^6	1.93×10^{21}	1.65×10^{20}
255 Fm	7/2	1.62×10^6	$7.72 imes 10^5$	1.25×10^{12}	$7.04 imes 10^{11}$
255 Rf	9/2	2.95×10^{-3}	$3.17 imes 10^4$	$9.38 imes 10^1$	2.00
257 Fm	9/2	1.19	3.33×10^8	3.96×10^8	$3.64 imes 10^9$
$^{257}\mathrm{Rf}$	1/2	2.02×10^{-2}	1.59	$3.21 imes 10^{-2}$	$1.15 imes 10^1$

・ロト ・日・ ・ヨ・ ・日・ うへの

э

イロト イボト イヨト イヨト

Decay chains ²⁷³,²⁷⁵Ds

Thank you for your attention

▶ ∢ ⊒