

JOINT INSTITUTE FOR NUCLEAR RESEARCH ОБЪЕДИНЁННЫЙ ИНСТИТУТ ЯЛЕРНЫХ ИССЛЕЛОВАНИЙ

EMPIRICAL SYSTEMATICS OF SPONTANEOUS FISSION HALF-LIVES OF HEAVY AND SUPERHEAVY NUCLEI

NIKITA MOISEEV^{1, 2}, GURGEN ADAMIAN², NIKOLAI ANTONENKO^{1, 2}

¹ BOGOLIUBOV LABORATORY OF THEORETICAL PHYSICS, JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, RUSSIA

² SCHOOL OF NUCLEAR SCIENCE AND ENGINEERING, NATIONAL RESEARCH TOMSK POLYTECHNIC UNIVERSITY, TOMSK, RUSSIA

61st meeting of the Programme Advisory Committee for Nuclear Physics Dubna, 19–20 July 2025

THEORETICAL MODELS	PROBLEMS				
MICROSCOPIC APPROACHES	С	omplexity of the fission	uncertainty in the height and shape of the fission barrier		
 Fundamental approaches Mean Field (MF) method, Hartree-Fock method 		process			
 Relativistic Mean Field (RMF) method 					
MICROSCOPIC-MACROSCOPIC APPROACHES	ana	nucleon interaction	distribution of forces in a multi-		
 FRDM (Finite Range Droplet Model) 		potentials	nucleon system		
• FRLDM (Finite Range Liquide Droplet Model)					
 WS (Weizsäcker-Skyrme) WS+RBF (WS + Radial Basis Functions) 	difficulty of		models do not		
PHENOMENOLOGICAL APPROACHES	(calculations	sufficient accuracy		
 Local Mass Relations (LMR) method 					

AIM:

TO EXPLORE A **NOVEL APPROACH TO THE SYSTEMATICS OF SPONTANEOUS FISSION HALF-LIVES**, AND TO INVESTIGATE THE ROLE OF CLUSTER DEGREES OF FREEDOM IN BOTH THE STRUCTURE AND FISSION PROCESS OF ATOMIC NUCLEI

OBJECTIVES:

REVIEW OF FORMULAS FOR THE SPONTANEOUS FISSION HALF-LIFE OF HEAVY AND SUPERHEAVY NUCLEI

EXAMINATION OF THE SYSTEMATICS OF SPONTANEOUS FISSION HALF-LIVES

DEVELOPMENT OF AN **EMPIRICAL FORMULA** FOR THE SPONTANEOUS FISSION HALF-LIFE OF HEAVY AND SUPERHEAVY NUCLEI

OBTAINING ESTIMATES OF SPONTANEOUS FISSION HALF-LIVES FOR EXPERIMENTALLY UNKNOWN ISOTOPES

[Adamian, G., Antonenko, N., & Scheid, W. (2012). Clustering effects within the dinuclear model. Clusters in Nuclei, Vol. 2, 165-227.]

$$Q_{\alpha}(Z,A) = M(Z,A) - M(Z-2,A-4) - M(^{4}\text{He}) \qquad A > 200$$
$$Q_{\alpha} = (4-11) \text{ MeV}$$

Spontaneous fission half-lives $T_{1/2}^{SF}$ for nuclei with $90 \le Z \le 114$ [*Wang, 2021*]. Solid lines are even-even nuclei, dashed-dotted lines are even-odd and odd-even nuclei, and dotted lines are odd-odd nuclei.

Peculiarities of dependencies of $T_{1/2}^{SF}$ on Q_{α}

Decimal logarithm of the experimental $T_{1/2}^{SF}$ as a function of Q_{α} for fixed values of the neutron excess N - Z for nuclei with $90 \le Z \le 102$ (black round symbols) and their approximation (orange lines) by

$$\operatorname{og}_{10} T_{1/2}^{\mathrm{SF}} \left(Q_{\alpha} \right) = c_Q Q_{\alpha} + f$$

$$f(N-Z) = \log_{10} T_{1/2}^{\text{SF}} - c_Q^{\text{mean}} Q_\alpha \qquad c_Q^{\text{mean}} = -5.946$$
$$f(N-Z) = c_0 + c_1(N-Z) + c_2(N-Z)^2 + c_{\text{shift}}^{\text{o-}A/\text{o-}o}$$

SETTING OF THE APPROXIMATING FUNCTION

$$\log_{10} T_{1/2}^{\rm SF} = \log_{10} T_{1/2}^{\rm SF}(Q_{\alpha}, N - Z)$$

Form of the approximating function for even-even (**e-e**) nuclei:

$$\log_{10} T_{1/2}^{\rm SF}(Q_{\alpha}, N-Z) = c_0 + c_1(N-Z) + c_2(N-Z)^2 + c_Q Q_{\alpha}$$

Form of the approximating function for odd-even and even-odd (**o**-*A*) nuclei / odd-odd (**o**-**o**) nuclei:

$$\log_{10} T_{1/2}^{\rm SF}(Q_{\alpha}, N-Z) = c_{\rm shift}^{\rm o-A/o-o} + c_0 + c_1(N-Z) + c_2(N-Z)^2 + c_Q Q_{\alpha}$$

NEW EMPIRICAL FORMULA FOR SPONTANEOUS FISSION HALF-LIVE

 $\log_{10} T_{1/2}^{\rm SF}(Q_{\alpha}, N-Z) = c_0 + c_1(N-Z) + c_2(N-Z)^2 + c_Q Q_{\alpha} + c_1(N-Z) + c_2(N-Z)^2 + c_Q Q_{\alpha} + c_2(N-Z)^2 + c_2(N-$

 $+ \begin{cases} 0, & \text{for even-even,} \\ h, & \text{for odd-}A, \\ 1.575h, & \text{for odd-odd.} \end{cases}$

90
$$\leq Z \leq 102$$
:
 $c_0 = -244.845, \quad c_1 = 12.2843, \quad c_2 = -0.12658,$
 $c_Q = -6.1023, \quad h = 4.309,$

 $Z \ge 103$: $c_0 = -0.414, \quad c_1 = 0.1379, \quad c_2 = 0,$ $c_Q = -0.9097, \quad h = 2.327.$

Calculated spontaneous fission half-lives of even-even nuclei with charge numbers $90 \le Z \le 102$ (solid gray symbols connected by lines) in comparison to the experimental values [*Kondev, 2021*] (open red symbols).

against charge number of parent nuclei.

COMPARISON WITH THEORETICAL MODEL PREDICTIONS

Half-lives of even-even superheavy nuclei, calculated using experimental Q_{α} values and systematics from [*Wang, 2021*] and the empirical formula (solid black circles connected by lines), compared with theoretical predictions from <u>Smolanczuk</u>, <u>Staszczak</u> μ <u>Warda</u> (solid gray, blue and orange triangles, connected by lines), and experimental values (open circles).

 α -decay chains for even-Z elements synthesized in complete fusion reactions ⁴⁸Ca + ²³⁸U, ^{242, 244}Pu, ^{245, 248}Cm, ²⁴⁹Cf.

COMPETITION BETWEEN SF AND α **-DECAY**

Calculated α -decay (solid diamonds) and spontaneous fission (solid circles) half-lives of **odd-odd** SHN. Solid (hatched) symbols represent calculations using experimental (systematic) Q_{α} values [<u>Wang, 2021</u>]. Experimental α -decay (open diamonds) and spontaneous fission (open circles) half-lives are taken from [<u>Kondev, 2021</u>]. The down (up) arrow indicates only the upper (lower) limit of the half-life of the corresponding decay mode.

CONCLUSIONS

influence of neutron excess on systematics of SF half-lives of actinides and SHN was revealed;

linear dependence of the decimal **logarithm of SF half-life** on **energy release of** α **decay** at fixed values of neutron excess was found;

parameter sets were determined to best reproduce experimental SF half-lives in two regions with $90 \le Z \le 102$ and $Z \ge 103$;

semi-empirical formula was proposed for the SF half-lives, depending on Q_{α} and N - Z;

comparison with theoretical models demonstrated that the formula accounts for shell effects and predicts a slower increase in SF half-lives with increasing neutron number in Cn and FI;

neutron excess preserved in α -decay chains was shown to play a significant role in the competition between α decay and SF;

discovered systematics underscores the importance of considering the nuclear structure from the perspective of α -cluster formation and confirms the fundamental **connection between SF and \alpha decay**, suggesting that these processes are **different manifestations of nuclear fission**.

THANK YOU FOR ATTENTION $R_L(\theta')$ $R_H(\theta)$

BACKUP SLIDES

Decimal logarithm of the experimental $T_{1/2}^{SF}$ as a function of Q_{α} for fixed values of the neutron excess N - Z for nuclei with $103 \le Z \le 118$ (black round symbols) and their approximation (orange lines) by

$$\log_{10} T_{1/2}^{\rm SF}\left(Q_{\alpha}\right) = c_Q Q_{\alpha} + f$$

Values of slope and intercept obtained by linear approximation of experimental points

N-Z	c_Q	f
51	-0.98	9.96
56	-1.68	15.09
59	-1.65	16.93

$$f(N - Z) = \log_{10} T_{1/2}^{SF} - c_Q^{mean} Q_{\alpha}$$

$$f(N - Z) = c_0 + c_1 (N - Z)$$

$$12^{103 \le Z \le 118}$$

$$12^{10}$$

$$8^{10}$$

$$8^{10}$$

$$4^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{10}$$

$$8^{1$$

$$c_Q^{\text{mean}} = -0.981$$

even-even:
 $n_{\text{nucl}} = 17$
 $c_0 = 0.19, c_1 = 0.140$
 $\text{rms} = 0.91$
odd-A:
 $n_{\text{nucl}} = 25$
 $c_0 = 4.46, c_1 = 0.106$
 $\text{rms}_{\text{fit}} = 0.94$
 $c_{\text{shift}} = 2.44$
 $\text{rms}_{\text{shift}} = 0.95$
odd-odd:
 $n_{\text{nucl}} = 9$
 $c_0 = 2.56, c_1 = 0.161$
 $\text{rms}_{\text{fit}} = 0.51$
 $c_{\text{shift}} = 3.53$
 $\text{rms}_{\text{shift}} = 0.5$

NEW EMPIRICAL FORMULA FOR SPONTANEOUS FISSION HALF-LIVE

$$\Gamma_{1/2}^{\rm SF}(Q_{\alpha}, N-Z) = c_0 + c_1(N-Z) + c_2(N-Z)^2 + c_Q Q_{\alpha} + c_1(N-Z) + c_2(N-Z)^2 + c_Q Q_{\alpha} + c_2(N-Z)^2 +$$

 $+ \begin{cases} 0, & \text{for even-even,} \\ h, & \text{for odd-}A, \\ 1.575h, & \text{for odd-odd.} \end{cases}$

 $90 \leq Z \leq 102$: $c_0 = -244.845, \quad c_1 = 12.2843, \quad c_2 = -0.12658,$ $c_Q = -6.1023, \quad h = 4.309,$

 $Z \ge 103$: $c_0 = -0.414, \quad c_1 = 0.1379, \quad c_2 = 0,$ $c_Q = -0.9097, \quad h = 2.327.$

Decimal logarithm of the spontaneous fission half-life of even-even isotopes with atomic numbers $90 \le Z \le 102$, plotted as a function of Q_{α} and N - Z. The surface is based on calculations using proposed formula. Experimental values [*Kondev, 2021*] are shown as red circles. Gray segments visualize the deviations of the experimental data from the calculated surface.

AVERAGE VALUES

Root mean square deviation (rms) of calculated values of decimal logarithms of spontaneous fission half-lives from experimental values:

$$\delta_{\rm rms} = \left\{ \frac{1}{n} \sum_{i=1}^{n} \left[\log_{10} T_{1/2}^{SF} \left((Q_{\alpha})_i, N_i - Z_i \right) - \log_{10} \left(T_{1/2}^{SF \, exp} \right)_i \right]^2 \right\}^{1/2}$$

n is the number of cores used to estimate the standard deviation.

Average absolute deviation:

$$\langle \delta \rangle = \frac{1}{n} \sum_{i=1}^{n} \left| \log_{10} T_{1/2}^{SF} \left((Q_{\alpha})_{i}, N_{i} - Z_{i} \right) - \log_{10} \left(T_{1/2}^{SF exp} \right)_{i} \right| = \frac{1}{n} \sum_{i=1}^{n} \left| \log_{10} \frac{\left(T_{1/2}^{SF \text{ calc.}} \right)_{i}}{\left(T_{1/2}^{SF \text{ exp.}} \right)_{i}} \right|$$

Maximum absolute deviation:

$$\delta_{\max} = \max_{i} \left| \log_{10} T_{1/2}^{SF} \left((Q_{\alpha})_{i}, N_{i} - Z_{i} \right) - \log_{10} \left(T_{1/2}^{SF \, exp} \right)_{i} \right|$$

Mean absolute deviation $\langle \delta \rangle$, rms deviation $\delta_{\rm rms}$, and maximum absolute deviation $\delta_{\rm max}$ of logarithmic spontaneouse fission half-lives calculated with proposed formula and the experimental data from Refs. [*Kondev, 2021*] for different nuclide regions; *n* is the number of experimentally studied nuclei in each region.

Nuclei	Z	n	$\langle \delta angle$	$\delta_{ m rms}$	$\delta_{ m max}$
e-e		41	1.14	1.64	4.62
o- <i>A</i>	$Z\!\leq\!102$	17	1.49	1.89	3.95
0-0		1	0.11	0.11	0.11
e-e		17	0.69	0.90	2.19
o- <i>A</i>	$Z\!\geq\!103$	26	0.90	1.24	4.03
0-0		9	0.40	0.54	1.28
e-e		58	1.01	1.46	4.62
o- <i>A</i>	$\forall Z$	43	1.13	1.53	4.03
0-0		10	0.37	0.51	1.28
all	$\forall Z$	111	1.00	1.43	4.62

Calculated α -decay (solid diamonds) and spontaneous fission (solid circles) half-lives of **even-even** SHN. Solid (hatched) symbols represent calculations using experimental (systematic) Q_{α} values [<u>Wang, 2021</u>]. Experimental α -decay (open diamonds) and spontaneous fission (open circles) half-lives are taken from [<u>Kondev, 2021</u>]. The down (up) arrow indicates only the upper (lower) limit of the half-life of the corresponding decay mode.

Calculated α -decay (solid diamonds) and spontaneous fission (solid circles) half-lives of **even-odd** SHN. Solid (hatched) symbols represent calculations using experimental (systematic) Q_{α} values [<u>Wang, 2021</u>]. Experimental α -decay (open diamonds) and spontaneous fission (open circles) half-lives are taken from [<u>Kondev, 2021</u>]. The down (up) arrow indicates only the upper (lower) limit of the half-life of the corresponding decay mode.

Calculated α -decay (solid diamonds) and spontaneous fission (solid circles) half-lives of **odd-even** SHN. Solid (hatched) symbols represent calculations using experimental (systematic) Q_{α} values [<u>Wang, 2021</u>]. Experimental α -decay (open diamonds) and spontaneous fission (open circles) half-lives are taken from [<u>Kondev, 2021</u>]. The down (up) arrow indicates only the upper (lower) limit of the half-life of the corresponding decay mode.

Calculated α -decay (solid diamonds) and spontaneous fission (solid circles) half-lives of **odd-odd** SHN. Solid (hatched) symbols represent calculations using experimental (systematic) Q_{α} values [<u>Wang, 2021</u>]. Experimental α -decay (open diamonds) and spontaneous fission (open circles) half-lives are taken from [<u>Kondev, 2021</u>]. The down (up) arrow indicates only the upper (lower) limit of the half-life of the corresponding decay mode.

Spontaneous fission half-life versus alpha separation energy for nuclei with $90 \le Z \le 102$, shown for even (left) and odd (right) neutron excess N - Z. Experimental data from [<u>Wang, 2021</u>; <u>Kondev, 2021</u>].