Study of strange particle production in Xe+CsI interactions at $\sqrt{s} = 3.26$ AGeV at the BM@N experiment

62nd meeting of the PAC for Particle Physics, 23 June 2025, Dubna, Russia

R.Zinchenko, J.Drnoyan, M.Kapishin, I.Rufanov, V.Vasendina, A.Zinchenko, D.Zinchenko **VBLHEP, JINR**

Experiment goals

Study of the strangeness production is one the main physics topics of heavy-ion experiments. Strange probes provide information about properties of hot and dN / dm dense nuclear matter produced in high-energy nuclear interactions, in particular, its equation of state.

BM@N detector at Nuclotron-NICA

Characteristics:

- Magnet: <= 1.0 T dipole
- Tracking: Si, GEM
- Particle ID: TOF, GEM
- **T0**, **Triggering**: scintillators
- Centrality, Event Plane: FHCal

Detectors for K_{s}^{0} and Λ decay reconstruction: 4Si + 7GEM stations

Fig. BM@N setup

First physics run with full configuration Dec. 2022 - Jan. 2023 Xe¹²⁴ + Csl interactions, beam kinetic energy 3.8A GeV: main trigger covers centrality < 70-75% (85% events), min bias trigger (7% events), beam trigger (3% events) ~500M triggers recorded

Decay topology

Fig.1-2. Yields and efficiencies vs m_{τ} for different lifetime intervals **Effective temperature: Fig.3.** Corrected for efficiency m_{T} spectrum **Fig.4.** m_T spectra for different lifetimes fitted to the Boltzmann function to obtain effective temperatures (inverse slopes) and integrated particle yields **Fig.5.** K_{s}^{0} decay curve reconstructed from integrated m_{τ} spectra for

different lifetimes

$T1 = 113 \pm 3 \text{ MeV}$ $T2 = 116 \pm 3 \text{ MeV}$ $T3 = 104 \pm 4 \text{ MeV}$ $T4 = 111 \pm 8 \text{ MeV}$

Transverse mass and rapidity spectra of Λ

Basic selection criteria (topological cuts):

- distances of the closest approach to primary vertex of decay products (dca_p)
- 2-track distance (dca_{VO})
- decay length (path)

Fig.1-2. Invariant mass of K_{s}^{0} before and after background subtraction **Fig.3-5.** Reconstructed K_s^0 meson yield versus lifetime, efficiency and decay curve of K_s^0 **Fig.6-7.** Invariant mass of Λ before and after background subtraction **Fig.8-10.** Reconstructed Λ hyperon yield versus lifetime, efficiency and decay curve of Λ

The results presented demonstrate that the BM@N experiment provides good conditions for measurement of strange particle production in heavy-ion interactions at Nuclotron-NICA. Physics analyses of collected data are underway.