

Nuclotron based Ion Colider fAcility

Realization of the MPD project

V. Riabov for the MPD Collaboration

Multi-Purpose Detector (MPD)

Stage-I

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$; **TOF**, **EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, 2.9 < $|\eta| < 3.3$; **FHCAL**: $|\Delta \phi| < 2\pi$, 2 < $|\eta| < 5$

Au+Au @ 11 GeV (full event simulation and reconstruction)

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

12 Countries, >500 participants, 38 Institutions and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research;

A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; Institute for Nuclear Problems of Belarusian State University, Belarus; Institute of Power Engineering of the National Academy of Sciences of Belarus, Belarus; University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Egyptian Center for Theoretical Physics, **Egypt**; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa, Mexico; Universidad Autónoma Metropolitana, Mexico; Universidad de Colima. Mexico: Universidad Michoacana de San Nicolás de Hidalgo, Mexico; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; High School of Economics University, Moscow, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; National Research Nuclear University MEPh1 , Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Ossetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; National Research Tomsk Polytechnic University, **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia** 3

MPD solenoid

- ✤ February: solenoid power cable thermal isolation in the Chimney, LHe pipe installed in the MPD Hall
- April: solenoid cooled down to the working temperature of 4.5 K, test current supply at ~ 0.2 T

- ✓ successful cooling to 4.5 K, cooling rate ~ 1.5 K/h
- \checkmark no leak in thermal shield and LHe chain
- ✓ heat load of ~ 100 W is consistent with design
- ✓ April: from room temperature to 80 K 15 days, from 80 K to 4.5 K - 8 days

SC coil training up to 0.15-0.2 T, water cooling required for higher currents and long-term operation

V. Riabov, 62nd Meeting of the PAC for Particle Physics, June - 2025

Magnetic field measurements

Novosibirsk BINP magnetic field mapper

	Along radius (R)	Along azimuth angle (👷)	Along beam (z)
Step size, cm	5	21	10
Total length, см	220	360° (1380 см at max. R)	700
Number of measurements	44	64	70

Single 3D Hall probe moves in 3 directions: z , R, ϕ Accuracy: 0.1 – 0.3 Gs Number of points: ~ 2.10⁵ (90 hours) Fields to measure: 0.3 – 0.57 T (5-6 points) Number of tunes per field: 5 Total time of measurements: ~ 3-4 months

Calculation and experimental current for optimal

tield configuration						
Current of nominal	Current in to TRIM 2,	Current in to TRIM 1,	Calc. field Gs		Measured data	
	A Itrim2	A Itrim1			Isc, A	Gs
0.2×l _{sc} =358	0	0	987		400	1067
	176	0	989		500	1350
	588	412	996	Γ	600	1600
0.4× <u>I_{sc}</u> =716	588	412	1986	Γ	644	1730
	940	412	1989		700	1880
	1176	824	1995		750	2210
	1176	824	2982		ĺ	
0.6×l _{sc} =1074	1352	824	2984			
	1764	1236	2988			
0.8× <u>I_{sc}</u> =1432	1764	1236	3971			
	1940	1236	3972			
	2352	1648	3983			
	2352	1648	4955			
1×l _{sc} =1790	2528	1648	4957			
	2940	2060	4964			

June: mapper delivery to JINR and installation of stationary Hall probes (40 – sensors evenly distributed over the inner surface of the solenoid)

July-September: MF measurements at 02-0.55 T

Central barrel subsystems

Frame - ready

Successful test installation of the carbon fiber support frame in the magnet, sagita ~ 5 mm at full load, rails for the TPC and TOF are installed

ECAL

ECAL ~ 38400 towers (2400 modules) produced by Tsinghua University, Shandong University, Fudan University, South China University, Huzhou University and JINR – production in IHEP (Protvino) and Tenzor (Dubna)

40(45) half-sectors to be ready by August (December), rest depends on WLS fiber supply from Tver (production rate 6 km/month, need 60 km)

TPC – central tracking detector

TOF - ready

All 28 (100%) TOF modules are assembled, tested, stored and ready for installation. Spare modules in production

24+ ROC ready; 100+ % FE cards manufactured TPC gas volume assembly and HV/leakage tests – ongoing TPC + ECAL cooling systems under commissioning

TPC mechanical body assembly	July 2025
with ROCs, leak test and HV test	
TPC installation to MPD and test	Nov – Dec 2025

Forward subsystems

FHCAL - ready

FHCal assembled on the platform, (modules are equipped with FEE)

FFD - ready

Test installation of FHCAL → autumn 2024 Final full installation → October 2025 Cherenkov modules of FFDE and FFDW, mechanics for installation in container with beam pipe are available, Long term tests with cosmic rays & laser ongoing

Beam and luminosity monitoring

Assembly of the main components of the detector for the Run on the collider beam - summer 2025

MPD schedule - 2025

1 January 13 th - 30 th	Solenoid and Correction Coils Power Supplies control system tests
2 January 25 th – February 21 st	Solenoid Safety regimes of emergent energy evacuation working out Development of algorithms of cooling on base of experience with manual regime
3 February 1 st – February 27 th	Solenoid Power cable temperature isolation inside of the Chimney
4 March 3 ^d – April 7 th	Cooling down of the Solenoid to the working temperature 4K
5 April 7 th -April 30 th	Development procedure of current supplying to the Solenoid, training
6 June $2^d - 25^{th}$	Installation stationary Hall probes
7 May 25^{th} – June 20^{th}	Final test of the Field Mapper at Novosibirsk
8 June 15 th	Delivering Mapper to the JINR
9 June 25 th - July 10 th	Installation Magnetic Field Mapper, Calibration, preparation for measurements of Field
10 July 10 th - September 30 th	Magnetic field measurements on nominals: 0.2T, 0.3T, 0.4T, 0.45T, 0.5T, 0.55T
11 July 15 th	TPC mechanical body is assembled, leak test and HV test are finished
12 October 1 st – October 12 th	Installation FHCal into poles
13 October 6 th – November 10 th	ECAL installation
14 October 13 th – November 10 th	Installation TOF modules (access from both sides)
15 November 11 th – December 20 th	TPC installation and test
16 June 22 ^d – November 30 th	Cabling
17 December 4 th – December 14 th	Beam pipe installation
18 December 22 ^d	Moving to the beam line
19 December 30 th	Readiness for Data taking

Starting detector commissioning in late 2025 remains the main priority

Funding

- Support program from Russian Ministry of Education and Science for NICA:
 - ✓ Russian groups from subordinated organizations participating in NICA with signed MOUs
 - ✓ 200 MRUB (~2.2 M\$) in 2024 for all NICA activities: MPD, BM@N, SPD, ARIADNA collaborations, accelerator
 - ✓ program has been extended to 2025-2026
 - ✓ new participating institution are possible
- $\bigstar \sim 40$ MRUB for MPD per year:
 - ✓ supported organizations: MEPhI, St. Petersburg Polytechnic University, INR RAS, Belgorod National Research University, North Ossetia State University
- Problems:
 - ✓ KI, MSU, SPbSU, HSE University are excluded from the program (not subordinated organizations)
 - ✓ no funds for travel (shifts, etc.)

Scientific activity

- ~ 50 reports at international conferences per year
- Annual NICA Workshops organized by JINR-MEPhI, https://indico.jinr.ru/event/4973/overview
- Overall publication activity (200+ publications SPIRES indexed) :

- Collaboration papers:
 - I. Status and initial physics performance studies of the MPD experiment at NICA Eur.Phys.J.A 58 (2022) 7, 140 (~ 50 pages)
 - II. MPD physics performance studies in Bi+Bi collisions at $\sqrt{s_{NN}} = 9.2 \text{ GeV}$ consolidation and publication of physics feasibility studies for BiBi@9.2 GeV, 40+ pages

arXiv:2503.21117 [nucl-ex], accepted by Revista Mexicana de Física

NICA

Physics feasibility studies

- Physics feasibility studies using centralized large-scale MC productions
- ♦ Centralized Analysis Framework for access and analysis of data → Analysis Train:
 - \checkmark consistent approaches and results across collaboration, easy storage and sharing of codes
 - \checkmark reduced number of input/output operations for disks and databases, easier data storage on tapes
- Heavily rely on the LIT and VBLHEP computing resources, thanks to computing and software teams!
- Develop physics program, software and analysis infrastructure for real data analysis

QCD medium at extreme net baryon densities $\rightarrow 1^{st}$ order phase transition + CEP

✤ MPD-CLD and MPD-FXT from start-up:

- ✓ Collider mode: Xe+Xe (Bi+Bi) at $\sqrt{s_{NN}} \sim 7 \text{ GeV}$
- ✓ Fixed-target mode: Xe (Bi) beam + W/Au target (~ 50-100 μ m wire) at $\sqrt{s_{NN}}$ ~ 3 GeV :
 - extends energy range to those of (HADES, BM@N, CBM); high event rate even with low-intensity beam

NICA MPD-FXT: Identified charged $\pi/K/p$ - I

- ★ XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- ♦ $\pi/K/p$ identification based on n-sigma selections in the TPC/TOF → good for the first-day measurements

Best possible coverage at low- $p_T \rightarrow$ ideal for dN/dy and $\langle p_T \rangle$ Sampled p_T range accounts for >95% (π^{\pm} , K⁺, p) and >85% (K⁻) of the total yield

NICA MPD-FXT: Identified charged $\pi/K/p$ - II

- ★ XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- * $\pi/K/p$ identification based on Bayesian probability in the TPC&TOF combined

- Better coverage at higher momenta, low-p_T coverage is limited due to TOF-matching requirement
- ✤ Good for advanced study of spectra shapes, radial flow, differential particle ratios (B/M, etc.)
- ★ Contamination corrections may be quite significant → require systematic study

MPD-FXT: Λ hyperon

- ★ XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- \clubsuit Λ identification based on topological selections

***** Good agreement between generated and reconstructed signals

NICA MPD-FXT: v_1 for charged π and protons

- ★ XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- ✤ New: realistic PID (TPC+TOF); efficiency corrections; centrality by TPC multiplicity

Reconstructed and generated signals mostly agree Some remaining discrepancies to be resolved

NICA MPD-FXT: v_2 for charged π and protons

- ★ XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- ✤ New: realistic PID (TPC+TOF); efficiency corrections; centrality by TPC multiplicity

Reconstructed and generated signals mostly agree Some remaining discrepancies to be resolved

MPD-FXT: Light nuclei (d, t, He⁴)

- ★ XeW@ T=2.5 AGeV (PHQMD), 15 M events → full event/detector reconstruction
- Realistic PID (TPC+TOF); efficiency and contamination corrections

Reconstructed and generated p_T and rapidity distributions agree Further developments to extend p_T range of measurements

Development of the Forward Spectrometers

Two volumes (green and magenta) available for the installation of forward tracker stations

Conception of the Forward Tracker (FTD)

- ✓ five tracking layers within z = 210-300 cm,
- ✓ 1% X_0 , ~ 80 µm spatial resolution

Pseudorapidity coverage of the forward spectrometer

Conception of the end-cup TOF detector

- $\checkmark~~a$ layer of MRPC-based TOF detectors, $\delta\tau\sim 50\text{--}70~ps$
- Tracking: ACTS package for FTD alone and combined (FTD + TPC)

NICA Tracking efficiency and momentum resolution

• FTD performance for (FTD-alone) and (TPC+FTD) tracks for pions and protons at $\eta = 1.6$ and 1.9

Reconstruction efficiency

- ✓ FTD makes possible track reconstruction up to $\eta \sim 2$ with momentum resolution < 10%
- \checkmark (FTD + TPC) tracks provide the best operation parameters

Charged particle identification

✤ Last layer is a TOF detector built of MRPC chambers

End-cap TOF detector based on a trapezoidal MRPCs

- \checkmark each MRPC chamber contains 64 strips, which both-sides read-out
- ✓ each TOF ring contains 24 MRPCs → 6144 read-out channels in total
- \checkmark same electronics based on NINO and HPTDC chips as in the basic TOF-MPD
- ↔ Reliable $\pi/K/p$ separation vs. particle momentum for different rapidity ranges

Rather limited momentum resolution is compensated by a large path length (~3m) → reasonable PID for charged hadrons

Summary

- ✤ MPD commissioning in the end of 2025 remains the main priority
- Extensive program of physics feasibility studies for MPD-CLD and MPD-FXT
- Prepare software and analysis infrastructure for real data analysis

BACKUP

MPD physics program

G. Feofilov, <u>P. Parfenov</u>	V. Kireev, Xianglei Zhu		K. Mikhailov, A. Taranenko		
 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 Spectra of light flavor and hypernuclei Light flavor spectra Hyperons and hypernuclei Total particle yields and yield ratios Kinematic and chemical properties of the event Mapping QCD Phase Diag. 		 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 		
D. Peresunko, Chi Yang		Wangmei Zha, A. Zinchenko			
 Electromagnetic probes Electromagnetic calorimeter meas. Photons in ECAL and central barrel Low mass dilepton spectra in-medium modification of resonances and intermediate mass region 		 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 			

Cross-PWG format of meetings for discussion of results and analysis techniques

Trigger detectors and performance

- FFD $(2.7 < |\eta| < 4.1)$:
- ✓ fast (~ 50 ps) event triggering → photons from π^0 's
- ✓ T_0 for time-of-flight measurements (TOF and ECAL)
- FHCAL $(2 < |\eta| < 5)$:
 - \checkmark Fast signals for event triggering
 - ✓ poor T_0 (~ 1 ns) and event z-vertex resolution

- TOF ($|\eta| < 1.5$):
 - ✓ 280 fast signals for each MRPC chamber
 - \checkmark no online timing information

Trigger system of the MPD is effective for <u>different HI collision systems and energies</u> as well as for <u>different operation modes</u> (MPD-CLD vs. MPD-FXT)