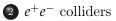
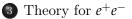
Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
●00	000	000000000000	000000

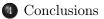
Theoretical Calculations for future electron-positron colliders: status and prospects

Andrej Arbuzov

BLTP, JINR


62nd JINR PAC for Particle Physics


$23\mathrm{th}$ June 2025


000000000000000000000000000000000000000	Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
	000	000	00000000000	000000

Outline

General motivation

- The Standard Model is the most successful physical model ever
- But there are still many open questions to it
- We believe that it is only an effective theory, but its applicability domain might be limited just by the Planck mass scale
- The primary goal of HEP is to study the physics of our actual microworld
- Discovering physics beyond SM is our hope
- In any case, the research in HEP will not stop by the end of LHC
- Logically, the next step should be a e^+e^- collider

Future e^+e^- collider projects

Linear Colliders
• CLIC, ILC

not to be built in Japan (?)

E_{tot}

- ILC: 91; 250 GeV $1~{\rm TeV}$
- \bullet CLIC: 500 GeV 3 TeV

 $\mathcal{L}\approx 2\cdot 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Stat. uncertainty $\sim 10^{-4}$

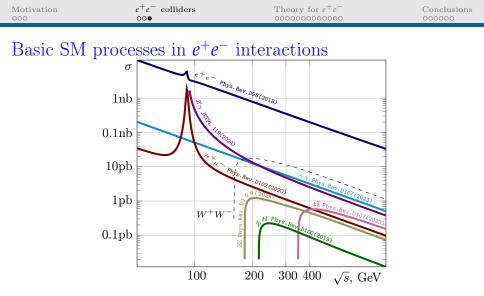
Beam polarization: e^{-} beam: P = 80 - 90% e^{+} beam: P = 30 - 60%

Circular Colliders

- FCC-ee, CEPC
- Z-factory (ZUNK, LEP3)
- Super Charm-Tau Factory
- $\mu^+\mu^-$ collider

 E_{tot}

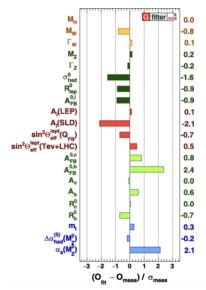
• 91; 160; 240; 350 GeV

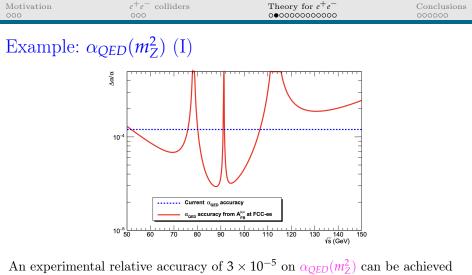

 $\mathcal{L}\approx 2\cdot 10^{36}~\mathrm{cm}^{-2}\mathrm{s}^{-1}~(4~\mathrm{exp.})$

Stat. uncertainty $\sim 10^{-6}$ Tera-Z mode!

Beam polarization: desirable

Physics possibilities at future e^+e^- machines

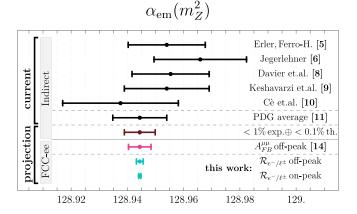

- Indeep verification of the EW sector of the SM
- Dedicated studies of the Higgs boson, EW bosons, and top quark
- Unique possibilities for QCD at the EW scale
- Searches for new physics of SMEFT and other types
- Photon-photon physics
- Properties of tau lepton
- Physics of (exotic) mesons
- N.B. Effective B-factory and Charm-Tau factory



References are given for studies with **ReneSANCe** Monte Carlo event generator

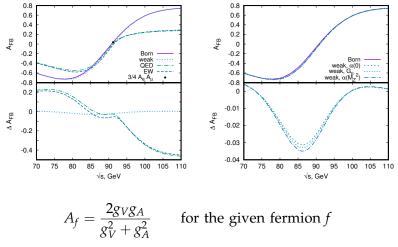
Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	•00000000000	000000

Where are we now with the SM



An experimental relative accuracy of 3×10^{-5} on $\alpha_{QED}(m_Z)$ can be achieved at FCC-ee, from the measurement of the muon forward-backward asymmetry at energies ~ 3 GeV below and ~ 3 GeV above the Z pole. The corresponding parametric uncertainties on other SM parameters and observables will be reduced. [FCC Coll. EPJC'2019] Motivation 000 e^+e^- colliders

Conclusions 000000


Example: $\alpha_{QED}(m_Z^2)$ (II)

A new method of $\alpha_{QED}(m_Z^2)$ extraction is proposed [M. Riembau PRL 2025]

Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	00000000000	000000

Forward-Backward Asymmetry

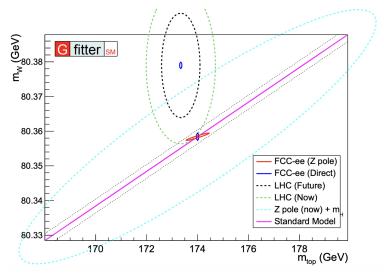
Motivation e^+e^- of	colliders Theory for e^+e^-	Conclusions
000 000	000000000000000000000000000000000000000	000000

ISR corrections to $e^+e^- \rightarrow Z(\gamma^*)$ $(\sqrt{s} = M_Z)$

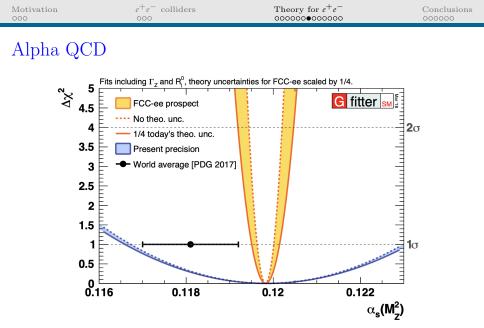
LO $\mathcal{O}(\alpha^nL^n)$ and NLO $\mathcal{O}(\alpha^nL^{n-1})$ ISR corrections in % at the Z-peak for $z_{\min}=0.1$

Type / n	1	2	3	4	5
LO γ	-32.7365	4.8843	-0.3776	0.0034	0.0032
NLO γ	2.0017	-0.5952	0.0710	-0.0019	
LO pair		-0.3057	0.0875	0.0016	-0.0001
NLO pair	_	0.1585	-0.0460	0.0038	
Σ	-30.7348	4.1419	-0.2651	0.0069	0.0031

Even higher orders seem to be relevant numerically \implies exponentiation


Exponentiation of the leading logs is straightforward and known [Gribov-Lipatov, Kuraev-Fadin, ...]

NLO exponentiation in the MSbar scheme is ambiguous


[A.A., U.Voznaya, PRD 2024]

Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	00000000000	000000

Indirect and direct measurements

[FCC Coll. EPJC'2019]

[FCC Coll. EPJC'2019]

EW quasi observables (I)

Observable	Present			FCC-ee	FCC-ee	Source and
	value	\pm	error	(statistical)	(systematic)	dominant experimental error
$m_Z (keV/c^2)$	91 186 700	±	2200	5	100	Z line shape scan
						Beam energy calibration
$\Gamma_{\rm Z} \; ({\rm keV})$	2 495 200	\pm	2300	8	100	Z line shape scan
						Beam energy calibration
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20 767	\pm	25	0.06	1	Ratio of hadrons to leptons
						Acceptance for leptons
$\alpha_{\rm s}({ m m_Z})~(imes 10^4)$	1196	\pm	30	0.1	1.6	$\mathrm{R}^{\mathrm{Z}}_{\ell}$ above
$R_{b} (\times 10^{6})$	216290	\pm	660	0.3	<60	Ratio of $b\bar{b}$ to hadrons
						Stat. extrapol. from SLD [7
$\sigma_{ m had}^0~(imes 10^3)$ (nb)	41 541	\pm	37	0.1	4	Peak hadronic cross-section
						Luminosity measurement
$N_{\nu}(\times 10^{3})$	2991	\pm	7	0.005	1	Z peak cross-sections
						Luminosity measurement
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231 480	\pm	160	3	2–5	$A_{FB}^{\mu\mu}$ at Z peak
						Beam energy calibration
$1/\alpha_{\rm QED}({ m m_Z})(imes 10^3)$	128 952	\pm	14	4	Small	$A_{FB}^{\mu\mu}$ off peak
$A_{FB}^{b,0}$ (×10 ⁴)	992	\pm	16	0.02	<1	b quark asymmetry at Z pole
						Jet charge
						-

[A.Blondel et al., CERN YR 2019]

Andrej Arbuzov

Conclusions

EW quasi observables (II)

Observable	Present			FCC-ee	FCC-ee	Source and
	value	±	error	(statistical)	(systematic)	dominant experimental error
$\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}$ (×10 ⁴)	1498	±	49	0.15	<2	τ polar. and charge asymm.
						au decay physics
$ m m_W~(keV/c^2)$	803 500	\pm	15 000	600	300	WW threshold scan
						Beam energy calibration
$\Gamma_{\rm W} (\rm keV)$	208 500	±	42000	1500	300	WW threshold scan
						Beam energy calibration
$lpha_{ m s}({ m m_W})(imes 10^4)$	1170	\pm	420	3	Small	$\mathbf{R}^{\mathrm{W}}_{\ell}$
$N_{\nu}(\times 10^{3})$	2920	\pm	50	0.8	Small	Ratio of invis. to leptonic
						in radiative Z returns
$m_{top} \ (MeV/c^2)$	172740	\pm	500	20	Small	$t\bar{t}$ threshold scan
						QCD errors dominate
$\Gamma_{\rm top}~({\rm MeV/c^2})$	1410	\pm	190	40	Small	$t\bar{t}$ threshold scan
						QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	m = 1.2	\pm	0.3	0.08	Small	$t\bar{t}$ threshold scan
						QCD errors dominate
$t\bar{t}Z$ couplings		\pm	30%	<2%	Small	$E_{CM} = 365 \text{ GeV run}$

[A.Blondel et al., CERN YR 2019]

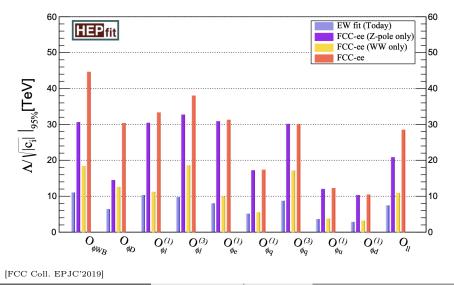
Mot 000	ivation		e ⁺ e ⁻ colliders 000		y for e^+e^-	Conclusions 000000
SN	A for F	CC-ee	(CEPC): s	status and	needs	
	Quantity	Current precision	FCC-ee stat. (syst.) precision	Required theory input	Theory status as of today	Needed theory improvement [†]
	$m_{\rm Z}~({\rm MeV})$	2.0	0.004 (0.1)	non-resonant	NLO,	NNLO for
	$\Gamma_{\rm Z}$ (MeV)	2.3	0.004 (0.012)	$e^+e^- \rightarrow f\bar{f},$ initial-state	ISR logarithms up to 6 th order	$e^+e^- \to f\bar{f}$
	$\sin^2\theta_{\rm eff}^\ell$	$1.6{\times}10^{-4}$	$1.2~(1.2)\times 10^{-6}$	radiation (ISR)		
	$m_{ m W}$ (MeV)	9.9	0.18 (0.16)	lineshape of $e^+e^- \rightarrow WW$ near threshold	NLO ($e^+e^- \rightarrow 4f$ or EFT framework)	NNLO for $e^+e^- \rightarrow WW$, $W \rightarrow f\bar{f}'$ in EFT setup
	HZZ coupling	_*	0.1%	cross section for $e^+e^- \rightarrow ZH$	NLO EW plus partial NNLO QCD/EW	full NNLO EW
	m _{top} (MeV)	290	4.2 (4.9)	threshold scan $e^+e^- \rightarrow t\bar{t}$	$N^{3}LO$ QCD, NNLO EW, resummations up to NNLL, $\mathcal{O}(30 \text{ MeV})$ scale uncert.	Matching fixed orders with resummations, merging with MC, $\alpha_{\rm S}$ (input)
[FC	C Coll., 2505					
	Andrej A	rbuzov	Theo	ory for e^+e^-	23t	h June 2025 16 / 25

Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	000000000000000	000000

SMEFT

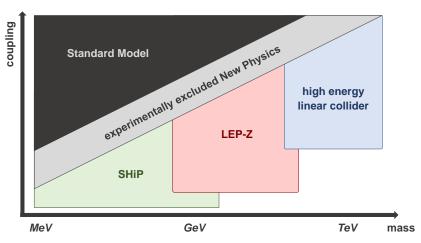
Possible deviations from SM predictions in differential and inclusive observables will be fit within SMEFT extension of the SM by >4 dim. operators

Remind three oblique Peskin–Takeuchi parameters used at LEP. At a new e^+e^- machine one can (should) do a much more detailed study


Scenarios of specific new physics models can be also verified, e.g. with long-lived particles

N.B. Having polarized beams would help a lot

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{C_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$


Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	000000000000	000000

Sensitivity to new physics scale

Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	00000000000	000000

Direct searches for new particles

[M. Drewes, E. Shaposhnikova and M. Shaposhnikov, "A Possible Future Use of the LHC Tunnel," arXiv:2503.17081]

Andrej Arbuzov	Theory for e^+e^-	23th June 2025	19 / 25

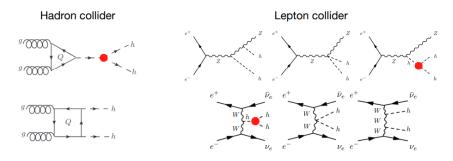
Motivation 000	e^+e^- colliders 000	Theory for e^+e^- 000000000000000000000000000000000000	Conclusions •00000

To-do list for theory

- Develop physical program on SM verification and new physics searches
- Compute 2-loop QED and EW + higher-order QCD radiative corrections to differential distributions of key processes: Bhabha scattering, $e^+e^- \rightarrow \mu^+\mu^-$; $\tau^+\tau^-$; $t\bar{t}$; $\gamma\gamma$; ZH etc.
- Add higher-order contributions within some approximations
- Account for interplay of QCD and electroweak effects
- Construct reliable Monte Carlo codes

Motivation 000	e^+e^- colliders 000	Theory for e^+e^-	$\begin{array}{c} \text{Conclusions} \\ \circ \bullet \circ \circ \circ \circ \end{array}$

Outlook


- A new high-energy e^+e^- collider is well motivated by the necessity to study SM in more detail and new physics searches
- Such a machine provides unique possibilities for progress in HEP
- Complementarity to hadron-hadron, lepton-hadron machines, fixed target experiments, and low-energy high-precision measurements is essential
- New theoretical calculations of higher-order corrections in SM and BSM are required
- Chains of interfaced Monte Carlo codes to be developed
- The work is started, but there are still many tasks

Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000	00000000000	000000

Backup slides

Motivation 000	e^+e^- colliders 000	Theory for e^+e^- 000000000000000000000000000000000000	Conclusions 000000

${\rm Higgs^3 \ self \ coupling \ }(I)$

[J. de Blas et al., JHEP 2020]

${\rm Higgs^3}$ self coupling (II)

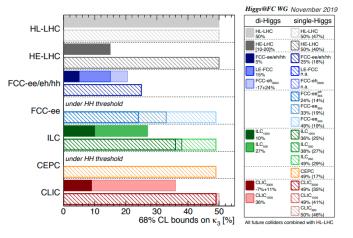


Figure 11. Sensitivity at 68% probability on the Higgs cubic self-coupling at the various FCs. [J. de Blas et al., JHEP 2020]

Motivation	e^+e^- colliders	Theory for e^+e^-	Conclusions
000	000		00000●

Higgs couplings

Coupling	HL-LHC	FCC-ee	FCC-ee + FCC-hh
κ_{Z} (%)	1.3*	0.10	0.10
$\kappa_{ m W}$ (%)	1.5*	0.29	0.25
$\kappa_{ m b}$ (%)	2.5*	0.38 / 0.49	0.33 / 0.45
$\kappa_{ m g}$ (%)	2^*	0.49 / 0.54	0.41 / 0.44
κ_{τ} (%)	1.6*	0.46	0.40
$\kappa_{\rm c}$ (%)	_	0.70 / 0.87	0.68 / 0.85
κ_{γ} (%)	1.6*	1.1	0.30
$\kappa_{\mathrm{Z}\gamma}$ (%)	10*	4.3	0.67
$\kappa_{\rm t}$ (%)	3.2*	3.1	0.75
κ_{μ} (%)	4.4*	3.3	0.42
$ \kappa_{\rm s} $ (%)	_	$^{+29}_{-67}$	$^{+29}_{-67}$
$\Gamma_{\rm H}$ (%)	_	0.78	0.69
Binv (<, 95% CL)	1.9×10^{-2} *	5×10^{-4}	$2.3 imes 10^{-4}$
\mathcal{B}_{unt} (<, 95% CL)	$4\times 10^{-2}~^*$	$6.8 imes 10^{-3}$	6.7×10^{-3}

[FCC Coll. 2505.00272 [hep-ex]]