

Development of a GUI interface for the cooling and thermal stabilization systems of the Time Projection Chamber "TPC" and Electromagnetic Calorimeter "ECAL" detectors of the Multi-Purpose Detector "MPD" in the Master-SCADA 4D framework

Full name

Youmna Ghoneim, Vladimir Senkevich

Agenda

★ System Architecture

- GUI built with TIA Portal + Master-SCADA
- Enables integrated control and monitoring

□ Control Capabilities

- Continuous instrumental & logical control
- Supports diagnostics and case analysis

□ Data Management

- Archiving of measured data
- Event messages (warnings & errors)

Monitored Parameters

- Temperature
- Pressure
- Coolant flow rate
- Coolant level
- Vacuum in water vessels
- Other key indicators
- □ GUI Development Status
- Presentation of the current design stage
 -integration from TIA Portal Scada to Master Scada

Introduction

Cooling System – Time Projection Chamber (TPC)

- A graphical user interface (GUI) was developed for the control, monitoring, and data logging of the cooling and thermal stabilization systems of the TPC and ECAL detectors in the MPD experiment.
- The system is built using Master-SCADA 4D software and communicates via the OPC protocol with TIA Portal Tool.
- All cooling systems are designed as "leakless", ensuring coolant pressure remains below atmospheric pressure to prevent water leakage inside the detector.

Platform concept for MPD detector cooling system

Cooling System – Time Projection Chamber (TPC)

- The system includes ~110 channels, with 76 dedicated to thermal stabilization.
- Each channel comprises:
 - A water pressure reducer
 - An electric heater
 - Temperature and pressure sensors
 - A flow meter
- A network of **250 temperature sensors** on the TPC enables **multi-zone PLC-based temperature control** across all channels.

PLC Sim

A software tool for simulating and testing programmable logic controller (PLC) programs

PLC Simulator & TIA Portal Integration

PIAD

S7-PLCSIM Advanced V7.0

 \times

Control Panel

🕒 (U) 🗙

-1

~

100

~

4

PLC-SIM allows virtual testing of PLC programs in TIA Portal, enabling realtime logic simulation, HMI interaction, and system verification—without physical hardware.

PLC Simulator & TIA Portal Integration "Device & Networks"

Project tree		coo	oling s	ystem Project_V20_6 🕨	PLC_1 [CPU 1512SP F-	1 PN] > Prog	ram blocks 🕨	Data_block	_1 [DB4	1		
Devices Plant objects	Landada 1.1.1											
H		*	1	🖌 🛃 🚞 🔭 Keep actu	al values 🏾 🙀 Snapshot	💐 💐 Сору	snapshots to star	t values 📳.	8.			-
			Data_	block_1								
 cooling system Project_V20_6 	^		Na	me	Data type	Start value	Retain	Accessible f	Writa	Visible in	Setpoint	-
Add new device	1	1	• 🖬	Static								1
Devices & networks		2	-0	▼ pressure	Array[010] of *Us						8	
PLC_1 [CPU 1512SP F-1 PN]	=	30	C 1	pressure[0]	"User_data_type_1"		V		V .		-	
Pevice configuration		4	-0	pressure[1]	"User_data_type_1"				2		E	
😼 Online & diagnostics		5		pressure[2]	"User_data_type_1"			\checkmark	V			
Software units		6	4	pressure[3]	"User_data_type_1"		2	\checkmark	V			1
Program blocks		1		pressure[4]	"User_data_type_1"		2	\checkmark	1			
Add new block		8	9	 pressure[5] 	"User_data_type_1"		9	$\overline{\mathbf{v}}$	1			
🜗 Main [OB1]		9	0	pressure[6]	"User_data_type_1"			1	V			14
Block_3 [FC1]		10	-	pressure[7]	"User_data_type_1"		2	$\overline{\checkmark}$	V			
8lock_1 [FB2]		11	D	pressure[8]	"User_data_type_1"		2	V	V			
8lock_1_D8 [D81]		12	•	 pressure[9] 	"User_data_type_1"		2	\square	V			
Block_1_D8_1 [D83]		13	0	pressure[10]	"Liser_data_type_1"			V	1	V		
Data_block_1 [DB4]		14	a	▼ temperature	Array[010] of "Us		8					
Example [D82]		15	0	temperature[0]	"User_data_type_1"							
System blocks		16		temperature[1]	"User_data_type_1"		(T)	$\overline{\mathbf{v}}$	V			
🔻 🊂 Technology objects		17		temperature[2]	"User_data_type_1"		<u>(2</u>)		1	2	2	
Add new object		18	D	temperature[3]	"User_data_type_1"		0	$\overline{\mathbf{v}}$	1		2	
🔻 🕁 External source files		19	a	temperature[4]	"User_data_type_1"		0				2	
🚔 Add new external file		20	-0	temperature[5]	"User_data_type_1"		0				2	
🕨 🍃 PLC tags		23	•	temperature[6]	"User_data_type_1"		0	1				
PLC data types		22	•	temperature[7]	"User_data_type_1"		n.		1			
Watch and force tables	1	23	0	temperature[8]	"User_data_type_1"				V			
A Contractorio	×	24	a	temperature[9]	"User_data_type_1"		B	V	$\overline{\mathbf{v}}$	~	V	
Details view		25	0	temperature[10]	"User_data_type_1"		8	$\overline{\mathbf{v}}$	V		2	
Data Technology objects			<	- The second second second		1	-	-	~	-		>
		1000		[0]			C Brongette			Diseased		1
		1.46	estine.	191			4 Propertie	s i i int	0 1 1 2	Diagnosti	63 U	AST.

Copper Thermal Stabilization Scheme

JINR

flog.

Integration of TIA Portal SCADA into Master SCADA

•Utilize OPC UA or Modbus TCP for seamless communication.

•Configure WinCC (TIA Portal) as an OPC UA Server.

•Master SCADA connects as an OPC UA Client to read/write data.

•Share and map **key process tags** (e.g., alarms, setpoints, status).

•Implement **security settings**: authentication, access control, encryption.

•Perform real-time **testing and validation** to ensure proper integration.

•Next-gen SCADA system by MPS Software with enhanced support for IoT and large distributed systems.

•Enables full integration across all management levels:

- PLC controllers
- Local HMI panels
- Operator workstations
- Servers
- Cloud services

Integration Strategy Overview

Goal: Connect Siemens SCADA (WinCC/PCS 7) to a Master SCADA system

Key Protocols:

OPC UA / DA: Standard for SCADA integration
Modbus TCP: Lightweight and widely used
MQTT / REST: For IoT or cloud-based systems

Use Siemens SCADA as a Data Server

Use MasterSCADA as the OPC UA Client

- In MasterSCADA, add Siemens as OPC UA data source
- Connect to Siemens OPC UA server (IP, Port 50000)
- Browse and import tags
- Assign tags to screens, trends, alarms, etc.

The two SCADA systems need a way to communicate in real-time. Choose a supported protocol:

Protocol	Use Case	Support
OPC UA / OPC DA	Most common & robust for SCADA-to- SCADA	Siemens WinCC, PCS 7 support OPC
Modbus TCP/RTU	Simple, for basic data sharing	Often used in industrial systems
MQTT	For modern IoT-oriented SCADA	May need gateway in Siemens
REST APIs	If master SCADA is cloud or web-based	Siemens usually needs middleware
Database exchange	For historical/logged data	Via SQL, CSV, etc.

GUI-Level Integration Methods

Remote Desktop / VNC: Directly launch
 Siemens SCADA interface

- Hyperlink Launcher: Button in MasterSCADA opens Siemens HMI

Thin Client: Host Siemens SCADA on
terminal server for browser access
Embedded HMI Web Page: Use iframe if

web-enabled HMI is available

Recommendation Based on Use Case

Jse Case	Recommended Setup
Real-time control + monitoring	OPC UA (Read/Write)
Monitoring only	OPC UA (Read-only) or Modbus TCP
GUI access only	RDP / VNC / Thin Client
Unified control center	Use a Master SCADA that supports OPC aggregation

Integration Layers Overview

- 1. Real-Time Control: OPC UA Read/Write
- 2. Monitoring: OPC UA Read-only / Modbus TCP
- 3. GUI Integration: RDP, VNC, Thin Clients

Method	Description
Remote Desktop Protocol (RDP)	Open Siemens HMI remotely from master
Thin Client / VNC	Access WinCC runtime as a web or VNC session
Hyperlink Button	Use a GUI button in master SCADA to open Siemens SCADA viewer
Embedded HMI Web Page	If Siemens HMI is web-enabled, embed in iframe in master SCADA

Conclusion

- A GUI interface was developed using Master-SCADA 4D and TIA Portal, enabling full control, monitoring, and data logging for the cooling and thermal stabilization systems of the MPD experiment.
- The system manages **110 leakless cooling channels**, with **76 dedicated to thermal stabilization**, ensuring safe operation below atmospheric pressure.
- Real-time monitoring of key parameters (temperature, pressure, flow, conductivity, vacuum, etc.) is integrated via **multi-zone PLCs** and **OPC communication**.
- The interface supports **continuous control, diagnostics, and data archiving**, ensuring reliability and efficient system analysis.
- Current status: **GUI design completed**, with performance and diagnostic tools in place.
- \checkmark Configure Siemens SCADA OPC UA server
- ✓ Setup Master-SCADA OPC UA client
- \checkmark Secure and validate all communication
- ✓ Optionally enable GUI-level integration
- \checkmark Test and document the full integration

Thanks for your Attention

Full Name

Youmna Ghoneim

Tel.: +7 (923) 40 80 895 E-mail: <u>youmnasami24@gmail.com</u>, <u>Ghoneim@jinr.ru</u>

15.05.2025

Telegram Contact

Ум_н_а