Physics at future electron-positron Z boson factories

Andrej Arbuzov

JINR, Dubna

Workshop on Physics at Future High-Energy e^+e^- Colliders

5th June 2025

Outline

General motivation

- The Standard Model is the most successful physical model ever
- But there are still many open questions to it
- We believe that it is only an effective theory, but its applicability domain might be limited just by the Planck mass scale
- The primary goal of HEP is to study the physics of our actual microworld
- Discovering physics beyond SM is our hope
- In any case, the research in HEP will not stop by the end of LHC
- Logically, the next step should be a e^+e^- collider

Future e^+e^- collider projects

Linear Colliders • ILC, CLIC

not to be built in Japan (?)

E_{tot}

- ILC: 91; 250 GeV $-1~{\rm TeV}$
- \bullet CLIC: 500 GeV 3 TeV

 $\mathcal{L}\approx 2\cdot 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Stat. uncertainty $\sim 10^{-4}$

Beam polarization: e^{-} beam: P = 80 - 90% e^{+} beam: P = 30 - 60%

Circular Colliders

- FCC-ee, CEPC
- Z-factory (ZUNK, LEP3, LEP-Z)
- Super Charm-Tau Factory
- $\mu^+\mu^-$ collider

 E_{tot}

• 91; 160; 240; 350 GeV

 $\mathcal{L}\approx 2\cdot 10^{36}~\mathrm{cm}^{-2}\mathrm{s}^{-1}~(4~\mathrm{exp.})$

Stat. uncertainty $\sim 10^{-6}$ Tera-Z mode!

Beam polarization: desirable

Basic processes of SM for e^+e^- annihilation

The cross sections are given for polar angles between $10^\circ < \theta < 170^\circ$ in the final state.

Andrej Arbuzov

Future Z factories ...

Physics possibilities at the Z peak

- Indeep verification of the EW sector of the SM
- Unique possibilities for QCD at the EW scale
- Searches for new physics of SMEFT and other types
- Photon-photon physics
- Properties of tau lepton
- Physics of (exotic) mesons
- N.B. Effective B-factory and Charm-tau factory

Where are we now with the SM

Weak mixing angle

An experimental precision better than 5×10^{-6} is therefore a robust target for the measurement of $\sin^2 \theta_W^{\rm eff}$ at FCC-ee, corresponding to more than a thirty-fold improvement with respect to the current precision of 1.6×10^{-4} .

Individual measurements of leptonic and heavy quark couplings are achievable, with a factor of several hundred improvement on statistical errors and, with the help of detectors providing better particle identification and vertexing, by up to two orders of magnitude on systematic uncertainties.

[FCC Coll. EPJC'2019]

 $\alpha_{QED}(m_Z^2)$

An experimental relative accuracy of 3×10^{-5} on $\alpha_{QED}(m_Z^2)$ can be achieved at FCC-ee, from the measurement of the muon forward-backward asymmetry at energies ~ 3 GeV below and ~ 3 GeV above the Z pole. The corresponding parametric uncertainties on other SM parameters and observables will be reduced. [FCC Coll. EPJC'2019]

Z boson mass and width; R_l

Overall experimental uncertainties of 0.1 MeV or better are achievable for the Z mass and width measurements at FCC-ee. The corresponding parametric uncertainties on $\sin^2 \theta_W^{\rm eff}$ and m_W SM predictions are accordingly reduced to 6×10^{-7} and 0.12 MeV, respectively.

An absolute (relative) uncertainty of 0.001 (5×10^{-5}) on the ratio of the Z hadronic-to-leptonic partial widths (R_l) can be reached. The same relative uncertainty is expected for the ratios of the Z leptonic widths, which allows a stringent test of lepton universality.

[FCC Coll. EPJC'2019]

Forward-Backward Asymmetry

Andrej Arbuzov

Future Z factories

Left-Right Asymmetry

[A.A., S.Bondarenko, L.Kalinovskaya, Symmetry'2020]

Tau lepton polarization

[A.A., S.Bondarenko, L.Kalinovskaya, Symmetry'2020]

Indirect measurements

[FCC Coll. EPJC'2019]

Andrej Arbuzov

Alpha QCD

[FCC Coll. EPJC'2019]

EW quasi observables (I)

Observable	Present			FCC-ee	FCC-ee	Source and
	value	\pm	error	(statistical)	(systematic)	dominant experimental error
$m_Z (keV/c^2)$	91 186 700	±	2200	5	100	Z line shape scan
						Beam energy calibration
$\Gamma_{\rm Z} \ ({\rm keV})$	2 495 200	\pm	2300	8	100	Z line shape scan
						Beam energy calibration
$\mathrm{R}^{\mathrm{Z}}_{\ell}$ (×10 ³)	20 767	\pm	25	0.06	1	Ratio of hadrons to leptons
						Acceptance for leptons
$\alpha_{\rm s}({ m m_Z})~(imes 10^4)$	1196	\pm	30	0.1	1.6	$\mathrm{R}^{\mathrm{Z}}_{\ell}$ above
$R_{b} (\times 10^{6})$	216290	±	660	0.3	<60	Ratio of $b\bar{b}$ to hadrons
						Stat. extrapol. from SLD [7]
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41 541	\pm	37	0.1	4	Peak hadronic cross-section
						Luminosity measurement
$N_{\nu}(\times 10^3)$	2991	\pm	7	0.005	1	Z peak cross-sections
						Luminosity measurement
$\sin^2 \theta_{\rm W}^{\rm eff}(imes 10^6)$	231 480	\pm	160	3	2–5	$A_{FB}^{\mu\mu}$ at Z peak
						Beam energy calibration
$1/lpha_{ m QED}(m m_Z)(imes 10^3)$	128 952	±	14	4	Small	${ m A}_{ m FB}^{\mu\mu}$ off peak
$A_{FB}^{b,0}$ (×10 ⁴)	992	±	16	0.02	<1	b quark asymmetry at Z pole
						Jet charge

[A.Blondel et al., CERN YR 2019]

Andrej Arbuzov

EW quasi observables (II)

Observable	Present			FCC-ee	FCC-ee	Source and
	value	\pm	error	(statistical)	(systematic)	dominant experimental error
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498	±	49	0.15	<2	τ polar. and charge asymm.
						au decay physics
$m_W (keV/c^2)$	803 500	\pm	15000	600	300	WW threshold scan
						Beam energy calibration
$\Gamma_{\rm W} \; ({\rm keV})$	208 500	±	42000	1500	300	WW threshold scan
						Beam energy calibration
$lpha_{ m s}(m m_W)(imes 10^4)$	1170	±	420	3	Small	$\mathbf{R}^{\mathbf{W}}_{\ell}$
$N_{\nu}(\times 10^3)$	2920	\pm	50	0.8	Small	Ratio of invis. to leptonic
						in radiative Z returns
$ m m_{top}~(MeV/c^2)$	172740	\pm	500	20	Small	$t\bar{t}$ threshold scan
						QCD errors dominate
$\Gamma_{\rm top}~({\rm MeV/c^2})$	1410	±	190	40	Small	$t\bar{t}$ threshold scan
						QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	m = 1.2	\pm	0.3	0.08	Small	$t\bar{t}$ threshold scan
-						QCD errors dominate
$t\bar{t}Z$ couplings		±	30%	<2%	Small	$E_{CM} = 365 \text{ GeV run}$

[A.Blondel et al., CERN YR 2019]

SMEFT

Possible deviations from SM predictions in differential and inclusive observables to be fit within SMEFT extension of the SM by 6 dim. operators

Remind three oblique Peskin–Takeuchi parameters used at LEP. At a Z-factory one can (should) do a much more detailed study

Scenarios of specific new physics models can be also verified, e.g. with long-lived particles

N.B. Having polarized beams would help a lot

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SME}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{C_j^{(6)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

Sensitivity to new physics scale

[FCC Coll. EPJC'2019]

Andrej Arbuzov

Direct searches of new particles

[M. Drewes, E. Shaposhnikova and M. Shaposhnikov, "A Possible Future Use of the LHC Tunnel," arXiv:2503.17081]

Andrej Arbuzov	Future Z factories	5th June 2025	20/23

To-do list for theory

- Develop physical program on SM verification and new physics searches
- Compute 2-loop QED and EW + higher-order QCD radiative corrections to differential distributions of key processes: Bhabha scattering, $e^+e^- \rightarrow \mu^+\mu^-$; $\tau^+\tau^-$; $t\bar{t}$; $\gamma\gamma$; ZH etc.
- Estimate higher-order contributions within some approximations
- Account for interplay with QCD and electroweak effects
- Construct reliable Monte Carlo codes

Outlook

- A new high-energy e^+e^- collider is well motivated by the necessity to study SM in more detail and new physics searches
- A new Z-factory provides unique possibilities for progress in HEP
- Complementarity to hadron-hadron, lepton-hadron machines and to fixed target experiments is essential
- New theoretical calculations of higher-order corrections in SM are required
- Chains of interfaced Monte Carlo codes to be developed
- The work is started, but there are still many tasks

Thank you for attention!