

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Update on Dielectron analysis with MPD

Sudhir Pandurang Rode

May 20, 2025

MPD Cross-PWG meeting

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

伺 ト イヨト イヨト ヨヨ のくで

- Comparison with Yonghong's analysis
- Curent results after the changes
- Conclusions and outlook

Two dielectron analyses

- In last month, Yonghong showed the results of her dielectron analysis.
- Initial comparison shows similar results despite applying different selection cuts.
- Differences:
 - No Fiducial and Veto acceptance ightarrow rather plain $|\eta| <$ 1.0 acceptance.
 - Different pair cuts: Only mass cut in her analysis. We apply cut on opening angle as well¹.
 - She apply PCM for conversion rejection and Mass cut for Dalitz pair rejection. We rely on Close TPC cut i.e mass and opening angle cut.
 - She uses 1D cuts only, however, we also use Machine learning for better elD.
- Thourough comparison was needed to be done: UrQMD to PHSD weights, track and pair selection cuts etc.

¹In these presetation, "loose cuts" \rightarrow cuts similar to yonghong's analysis; "tight cuts" \rightarrow cuts similar to sudhir's analysis $\langle \Box \rangle + \langle \Box \rangle + \langle$

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

UrQMD to PHSD weights comparison

UrQMD to PHSD weights till collaboration meeting

UrQMD to PHSD weights till collaboration meeting

May 20, 2025

Sources of the difference

- After a thorough investigation, following differences were found in my weights calculations.
 - PHSD cocktails that I was using (Yonghong uses the same), were assumed to be in $|y_{pair}| < 1.0$, however, in fact they were for $|y_{pair}| < 0.5 \rightarrow$ this is quickly fixed by using factor 2.
 - I used to apply z vertex cut of |z| < 130 cm. Yonghong applied 80 cm. Moreover, she removed emply events using z = 0 cut.
 - Last change was in primary track identification. Yonghong applies $abs(startvertex_{x,y,z} MC_{zvrtx}) < 0.1$ selection which I did not.
- All the changes are made in my weights estimation and not in Yonghong's.
- After applying these changes, the UrQMD cocktails were compared. As for PHSD coctails, they are basically same.

UrQMD cocktail comparison before and after

May 1

UrQMD cocktail comparison before and after

Comparison with Yonghong's analysis (TPC+TOF)

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 つく⊙

Track selection - 1D cuts TPC+TOF analysis

- For consistent comparison, similar cuts were applied in our analysis as yonghong's analysis:
- $\rightarrow\,$ Pool-1: fully reconstructed tracks^2 in $|\eta|<1.0$
 - NHits > 39, DCA < 2.5σ, TPC dEdX (nσ_π > 2), TPC dEdX (p dep. (p < 0.7) and -1 to 2σ (p > 0.7)), TOF Matching (dφ and dz < 3 (2)σ), TOF (-2 to 2σ).
- \rightarrow Pool-2: tracks w/ loose cuts³.
 - ($|\eta|$ <2.5, NHits > 10, DCA < 5 σ , TPC dEdX (-2 to 2 σ), TOF PID (if matched).
 - Mass cut on pairs: $M_{\rm inv} < 100~{\rm MeV}/c^2$ and NO restrictions on opening angle.

²TOF matched tracks identified in the TPC and TOF ³This is corresponding Pool 3 in our analysis

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

Comparison w/ Yonghong's TPC+TOF results

before applying any pair rejection strategy:

$\begin{array}{l} \textbf{Yonghong} \rightarrow \\ (11.5 \text{M}) \end{array}$	PHSD: S/B in 0.2-1.5: 0.0119791;S=3660.2;BG=305548 LM (S//B 0.2 -0.6): 4.3799;S=1912.91;BG=190748 Omega (S//B 0.6 -0.85): 5.47688;S==1542.1;BG=79279.2 Phi (S//B 0.85-1.2): 1.31316;S==237.513;BG=32714.6 ALL (S//B 0.2-1.5): 6.62162;S=3660.2;BG=305548	U-B = 3057±717
Sudhir $ ightarrow$ (11.6M)	S/B (0.2 - 1,5 Gev/c2) 0.0120775 LH (s/sqrt(b)) (0.20 - 0.60 Gev/c2):4.40873; S = 1916.96; B = 189060.3 omega (s/sqrt(b)) (0.60 - 0.85 Gev/c2):5.49499; S = 1541.56; B = 78702.2 phi (s/sqrt(b)) (0.85 - 1.20 Gev/c2):15.49499; S = 233.23; B = 32451.2 All (s/sqrt(b)) (0.85 - 1.20 Gev/c2):6.64793; S = 3659.29; B = 302985.5	U-B = 3417±781

after applying respective pair rejection strategies:

$\begin{array}{l} \textbf{Yonghong} \rightarrow \\ (11.5\text{M}) \end{array}$	PHSD_PCM_Pi0: S/B in 0.2-1.5 LM (S/\/B 0. Omega (S/\/B 0. Phi (S/\/B 0. ALL (S/\/B 0.	5: 0.0665213;S=155 .2 -0.6): 6.49021 .6 -0.85): 8.92031 .85-1.2): 2.01531 .2-1.5): 10.1676	4.08;BG=23362.1 ;S=745.148 ;BG= ;S==708.388 ;BG ;S==116.563 ;BG ;S=1554.08 ;BG=	=13181.6 3=6306.42 3==3345.33 =23362.1	U-B = 1606±220
Sudhir \rightarrow (11.6M)	S/B (0.2 - 1,5 Gev LM (s/sqrt(b) omega (s/sqrt(b) phi (s/sqrt(b) All (s/sqrt(b)	//c2) 0.0633983)) (0.20 - 0.60 GeV/c2)) (0.60 - 0.85 GeV/c2))) (0.85 - 1.20 GeV/c2))) (0.20 - 1.50 GeV/c2)	:6.47626; S = :8.86687; S = :1.91563; S = :10.06771; S =	769.17; B = 14105. 728.51; B = 6750.3 117.15; B = 3739.9 1598.76; B = 25217.	U-B = 1492±228 ► হা= ৩৭০
Sudhir Pandura	ng Rode	Update on Dielectro	n analysis with MP[D May 20), 2025 12 / 23

Comparison w/ Yonghong's TPC+TOF results: Plots

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

13 / 23

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (loose cuts) ($|\eta| < 1.0$)

Update on Dielectron analysis with MPD

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (loose cuts) ($|\eta| < 1.0$)

	Bef. NFP (1D)	Aft. CTC (1D)	Bef. NFP (MLP)	Aft. CTC (MLP)
Mass	-	100	-	100
U	297314±545	24682±157	362841±602	28246±168
В	294445 ± 543	$23394{\pm}153$	$359631{\pm}600$	$26556{\pm}163$
U-B	2868 ± 769	$1288{\pm}219$	3210±850	$1689{\pm}234$
(U-B)/B (%)	$0.97{\pm}0.00$	$5.50{\pm}0.05$	$0.89{\pm}0.00$	$6.36 {\pm} 0.05$
BFE	14	34	14	52
S	3618	1578	4761	2112
S/B (%)	1.23	6.74	1.32	7.95
BFE	22	51	31	81
Significance	6.67	10.32	7.94	12.96

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

Current status w/ corrected UrQMD/PHSD weights

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

< 1 k

Current status

- The differences in the analyses are, in Close TPC cut analysis, acceptance is divided into Fiducial and veto regions.
- Moreover, the selection cuts on pair mass and opening angle are dictated by $p_{\rm T}$ of the partner (in contrast to Yonghong's analysis, where flat cut of 100 MeV is applied for all $p_{\rm T}$ and no opening angle cut is applied).
- Howver, best possible results from Close TPC cut need to studied and optimized.
- Events with vertex reconstructed using tracks less than 2 will not be used.
- $\bullet\,$ Similar to Yonghong's analysis, in 1D cuts analysis, ECal will not be used below pT < 0.8 GeV/c.
- In case of Machine learning, ECal information was given for whole pT range, so in this case, ECal is being used in whole range.

▲ Ξ ► Ξ Ξ < < < </p>

Track selection

- ightarrow Pool-1 fully reconstructed tracks⁴ in fiducial area ($|\eta|$ < 0.7)
 - NHits > 39, DCA < 2.5 σ , TPC dEdX (n σ_{π} > 2), TPC dEdX (p dep. (p < 0.7) and -1 to 2 σ (p > 0.7)), TOF Matching (d ϕ and dz < 3 (2) σ), TOF (-2 to 2 σ) AND for pT > 0.8 GeV/c: ECal PID (p dep. < E/p < 1.5 and m² < 2 σ) w/ ECal Matching (< 3 σ).
- ightarrow Pool-2 fully reconstructed tracks in veto area (0.7 < $|\eta|$ < 1.0) (Same cuts.).
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC.
 - $p_T \ll 110 \text{ MeV/c} \rightarrow \text{not matched in TOF}$ and ECal ($|\eta| \ll 2.5$, NHits > 10, DCA < 5 σ , TPC dEdX (-4 to 4 σ)).
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in TOF but matched in ECal} (|\eta| < 2.5, \text{NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-3 to 3\sigma), \text{ECal} (p dep. < E/p < 1.5 and m² < 2\sigma, \text{ECal Matching (< 3\sigma)}).$
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in ECal but may or may not in TOF} (|\eta| <2.5, NHits > 10, DCA < 5\sigma, TPC dEdX (-1 to 2<math>\sigma$), TOF PID (if matched).
 - No further pairing (NFP): $M_{\rm inv} < 120~{\rm MeV}/c^2~{\rm w}/$ no cut on opening angle.
 - Close TPC cut (CTC): $M_{\rm inv} < 80~{\rm MeV}/c^2$ and opening angle $< 10~{\rm or}~5^o$.

⁴TOF and ECal matched tracks identified in the TPC, TOF and ECal $\leftarrow \equiv \rightarrow \equiv = \circ \circ \circ \circ \circ$

18/23

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (tight cuts) (Fid. < 0.7)

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (tight cuts) (Fid. <0.7)

	Bef. NFP (1D)	Aft. CTC (1D)	Bef. NFP (MLP)	Aft. CTC (MLP)
Mass & θ	-	120/80 & 10/5	-	120/80 & 10/5
U	151287 ± 389	47029±217	193895±440	53401±231
В	$149055{\pm}386$	45222±213	$191288 {\pm} 437$	$51114{\pm}226$
U-B	2231±548	$1807 {\pm} 304$	$2607 {\pm} 621$	2287±323
(U-B)/B (%)	$1.50{\pm}0.01$	$3.99{\pm}0.03$	$1.36{\pm}0.00$	4.47±0.03
BFE	17	35	18	50
S	2125	1854	2887	2498
S/B (%)	1.43	4.10	1.51	4.89
BFE	15	37	22	60
Significance	5.50	8.72	6.60	11.05

Cuts: pair mass < 120 (80) MeV/c2 and opening angle < 10 (5) deg.

4 E b

ELE SQC

20 / 23

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (tight cuts) (Fid. < 0.7)

	Bef. NFP (1D)	Aft. CTC (1D)	Bef. NFP (MLP)	Aft. CTC (MLP)
Mass & θ	-	120/80 & 10/5	-	120/80 & 10/5
U	151287±389	47029±217	193895±440	53401±231
В	$149055 {\pm} 386$	45222±213	$191288 {\pm} 437$	$51114{\pm}226$
U-B	2231±548	$1807 {\pm} 304$	$2607{\pm}621$	2287±323
(U-B)/B (%)	$1.50{\pm}0.01$	$3.99{\pm}0.03$	$1.36{\pm}0.00$	4.47±0.03
BFE	17	35	18	50
S	2125	1854	2887	2498
S/B (%)	1.43	4.10	1.51	4.89
BFE	15	37	22	60
Significance	5.50	8.72	6.60	11.05

Cuts: pair mass <120 (80) MeV/c2 and opening angle < 10 (5) deg.

5	Þ	4	2	Þ	4	E	Þ	-2	12	う	٩	C
		Ma	ay 2	20,	20)25				21	/ 2	23

Sudhir Pandurang Rode

Conclusions and Next steps

- Two dielectron analyses were compared with similar selection cuts and found consistent with each other.
- Current status of our analysis results with updated weights was shown.
- Strong cuts on pair opening angle and invariant mass reduces the signal loss but less background suppression ⇒ yonghong's analysis where no restrictions on the opening angle.
- For visible reconstructed signal, new production is needed: Enhanced η -Dalitz decays (e.g. factor 5) w/ Request 34 like settings and more statsitics.
- Benefit of a veto region is being investigated.

<<p>A 目 > A 目 > A 目 > 目 = のQQ

THANK YOU

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

BACK-UP

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (tight cuts) ($|\eta| < 1.0$)

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

May 20, 2025

2/7

ULS, LS and Signal: 1D cuts (11.4M) and MLP (10.6M) (tight cuts) ($|\eta|<$ 1)

-	Bef. NFP (1D)	Aft. CTC (1D)	Bef. NFP (MLP)	Aft. CTC (MLP)
Mass & θ	-	120/80 & 10/5	-	120/80 & 10/5
U	297314±545	90313±301	362841±602	98370±314
В	294445 ± 543	$87414 {\pm} 296$	$359631 {\pm} 600$	$95164{\pm}308$
U-B	$2868 {\pm} 769$	2899±422	3210±850	3206±440
(U-B)/B (%)	$0.97{\pm}0.00$	$3.32{\pm}0.02$	$0.89{\pm}0.00$	3.37±0.02
BFE	14	47	14	53
S	3618	3073	4761	4039
S/B (%)	1.23	3.52	1.32	4.24
BFE	22	53	31	84
Significance	6.67	10.39	7.94	13.09

Cuts: pair mass < 120 (80) MeV/c2 and opening angle < 10 (5) deg.

Sudhir Pandurang Rode

Update on Dielectron analysis with MPD

ELE NOR

Request 34: Pairing with partner pT < 110 MeV/c

opening angle in degrees

▲ 四 ▶

Request 34: Pairing with partner pT > 110 MeV/c

- Track1 is matched and fully reconstructed in TOF and ECal.
- Correlation between invariant mass and opening angle weakens at higher values.

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Revised Analysis Strategy

- \Rightarrow Three electron pools:
- \rightarrow Pool-1 fully reconstructed tracks 5 in fiducial area (| $\eta|$ < 0.7) $p_{\rm T} \gtrapprox$ 110 MeV/c
- $\rightarrow\,$ Pool-2 fully reconstructed tracks in veto area 0.7 $<|\eta|<$ 1.0 $p_{\rm T}\gtrapprox$ 110 MeV/c.
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC.
 - $p_{\rm T} <= 110 \ {\rm MeV/c} \rightarrow$ not reaching the TOF.
 - $p_{\rm T} > 110 \ {\rm MeV/c} \rightarrow$ reaching the TOF.
 - Step 1 No further pairing (NFP): Tagging between Pool 1 and Pool 2.
 - Step 2 Close TPC cut (CTC): Tagging between Pool 1 and 3, and pairs within certain M_{inv} and opening angle are removed.
 - Step 3: Rest of the tracks with $p_{\rm T} > 200$ MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

⁵TOF and ECal matched tracks identified in the TPC, TOF and ECal (2) 2

Track selection - 1D cuts analysis

- ightarrow Pool-1 fully reconstructed tracks⁶ in fiducial area ($|\eta|$ < 0.7)
 - NHits > 39, DCA < 3σ , TPC dEdX (p dep. (p < 0.8) and -1 to 2σ (p > 0.8)), TOF Matching (d ϕ and dz < 3σ), TOF (-2 to 2σ), ECal PID (p dep. < E/p < 1.5 and m² < 2σ), ECal Matching (< 3σ).
- ightarrow Pool-2 fully reconstructed tracks in veto area (0.7 < $|\eta|$ < 1.0) (Same cuts.).
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC.
 - $p_T <= 110 \text{ MeV/c} \rightarrow \text{not matched in TOF and ECal} (|\eta|<2.5, \text{ NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-4 \text{ to } 4\sigma)).$
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in TOF but matched in ECal} (|\eta| < 2.5, \text{NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-3 to 3\sigma), \text{ECal} (p dep. < E/p < 1.5 and m² < 2\sigma, \text{ECal Matching} (< 3\sigma)).$
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in ECal but may or may not in TOF} (|\eta| <2.5, NHits > 10, DCA < 5\sigma, TPC dEdX (-1 to 2<math>\sigma$), TOF PID (if matched).
 - No further pairing (NFP): $M_{\rm inv} < 120 \text{ MeV}/c^2$.
 - Close TPC cut (CTC): $M_{\rm inv} < 80 \ {\rm MeV}/c^2$ and opening angle $< 10 \ {\rm or} \ 5^o$.

⁶TOF and ECal matched tracks identified in the TPC, TOF and ECal (2) 2