# Relativistic generalization of the Faddeev-Yakubovsky equation

S. Yurev, S. Bondarenko BLTP JINR

XXVIth Baldin ISHEPP 18.09.2025

Object - Four-particle system (Helium-4)



- Goal Research within the framework of relativistic formalism
- Motivation Recent successful results of the relativistic study of three-nucleon nuclei



| Potential          | NR    | $\mathbf{R}$ |
|--------------------|-------|--------------|
| GRAZ-II $p_D=4~\%$ | 8.334 | 8.617        |
| GRAZ-II $p_D=5~\%$ | 7.934 | 8.217        |
| GRAZ-II $p_D=6~\%$ | 7.548 | 7.831        |

S.Yurev, PhD thesis, (**2022**); S.G. Bondarenko, DSc thesis (**2024**); S.G. Bondarenko , V.V. Burov, S.A. Yurev. Nucl. Phys. A., 1004 (**2020**), 122065;1014 (**2021**), 122251

## Bethe-Salpeter-Faddeev approach

- A. Ahmadzadeh, J. A. Tjon, Phys. Rev.,
- v. 147, 4 (**1966**), 1111
- G. Rupp, J. A. Tjon, Phys. Rev. C 45 (1992), 2133

|                             | NRF   | $QP_1$ | $QP_2$ | BSF   |
|-----------------------------|-------|--------|--------|-------|
| $P_D^d = 4\%$ $P_D^d = 5\%$ | 8.369 | 8.539  | 8.606  | 8.701 |
| $P_D^{d} = 5\%$             | 7.961 | 8.129  | 8.188  | 8.290 |
| $P_D^d = 6\%$               | 7.566 | 7.735  | 7.787  | 7.892 |

|         | NRF   | $QP_1$ | $QP_2$ | BSF   |
|---------|-------|--------|--------|-------|
| Paris-1 | 7.245 | 7.389  | 7.435  | 7.535 |
| Paris-2 | 7.183 | 7.363  | 7.408  | 7.474 |
| Bonn    | 7.822 | 8.083  | 8.140  | 8.201 |







- S.A. Yurev, PhD thesis, (2022);
- S.G. Bondarenko, DSc thesis (2024);
- S.G. Bondarenko , V.V. Burov, S.A. Yurev.

Nucl. Phys. A., 1004 (2020), 122065;

1014 (**2021**), 122251

| $p_D$ | $^{1}S_{0} - {}^{3}S_{1}$ | $^{3}D_{1}$ | $^{3}P_{0}$ | $^{1}P_{1}$ | $^{3}P_{1}$ |
|-------|---------------------------|-------------|-------------|-------------|-------------|
| 4     | 9.221                     | 9.294       | 9.275       | 9.295       | 9.321       |
| 5     | 8.819                     | 8.909       | 8.891       | 8.910       | 8.933       |
| 6     | 8.442                     | 8.545       | 8.528       | 8.545       | 8.567       |

|                    | $^{1}S_{0}, ^{3}S_{1}$ | $^{1}S_{0}, ^{3}S_{1}, ^{3}D_{1}$ | $^{1}S_{0}, ^{3}S_{1}$ | ${}^{1}S_{0}, {}^{3}S_{1}, {}^{3}D_{1}$ |
|--------------------|------------------------|-----------------------------------|------------------------|-----------------------------------------|
| GRAZ-II $p_D=4~\%$ | 8.372                  | 8.334                             | 8.628                  | 8.617                                   |
| GRAZ-II $p_D=5~\%$ | 7.964                  | 7.934                             | 8.223                  | 8.217                                   |
| GRAZ-II $p_D=6~\%$ | 7.569                  | 7.548                             | 7.832                  | 7.831                                   |

| Paris-1 | 7.535 |
|---------|-------|
| Paris-2 | 7.474 |





## FY equation in operator (symbolic) form

$$T = V + VGT$$

Bethe-Salpeter equation for a four-particle T matrix

$$V = V_{12} + V_{23} + V_{31} + V_{14} + V_{24} + V_{34} + V_{34} + \dots = \sum_{(ij)} V_{ij}$$
 Only pair interaction

$$T = T^{(ijk,l)} + T^{(ikl,j)} + T^{(kjl,i)} + \dots + T^{(ij,kl)} + T^{(ik,lj)} + \dots$$

**12** 

6

## Jacobi variables for a four-particle system

$$\begin{bmatrix} k_i & k_j & k_k & k_l \end{bmatrix}$$

$$if \quad m_i = m_j = m_k = m_l$$





$$T^{(ijk,l)}(k_{ij}, p_{ij,k}, q_{ijk,l}) = T^{(kjl,i)}(k_{kj}, p_{kj,l}, q_{kjl,i}) = T^{(lji,k)}(k_{lj}, p_{lj,i}, q_{lji,k}) = \dots = T_M(k, p, q)$$

$$T^{(ij,kl)}(k_{ij}, k_{kl}, s_{ij,kl}) = T^{(lj,ik)}(k_{lj}, k_{ik}, s_{lj,ik}) = T^{(kj,li)}(k_{kj}, k_{li}, s_{kj,li}) = \dots = T_N(k, \kappa, s)$$

## System integral equation

#### System integral equation for $T_M$ and $T_N$

$$T_{M}(k, p, q) = \int \frac{dk'}{(2\pi)^{4}} \frac{dq'}{(2\pi)^{4}} S(K/4 - q') S(k' + q/2 + \frac{1}{2}q' + K/4)$$

$$[M(k, p; \mathcal{K}, \mathcal{P}) T_{M}(k', q + \frac{1}{3}q', q') + M(k, p; \mathcal{K}_{1}, \mathcal{P}_{1}) T_{N}(k', q - \frac{1}{2}q', q')]$$

$$T_{N}(k, \kappa, s) = \int \frac{dk'}{(2\pi)^{4}} \frac{dq'}{(2\pi)^{4}} S(K/4 - q') S(K/4 + q' + s)$$

$$N(k, \kappa; \frac{1}{2}s + q', k') T_{M}(k', -s - \frac{2}{3}q', q')$$

#### Integral equation for M

$$M(k, p; k', p') = 2 (2\pi)^4 t(k, k', Z_{qp}) \delta(p - p') +$$

$$\int \frac{d^4 p''}{(2\pi)^4} S(\frac{1}{4}K + \frac{1}{3}q - p'') S(\frac{1}{4}K + \frac{1}{3}q + p + p'')$$

$$2t(k, \frac{1}{2}p + p'', Z_{qp}) M(p + \frac{1}{2}p'', p''; k', p')$$

#### Integral equation for N

$$N(k, \kappa; k', \kappa') = (2\pi)^4 2 t(k, k', Z_s) [\delta(\kappa - \kappa') + \delta(\kappa + \kappa')] + \int \frac{d^4 k''}{(2\pi)^4} S(\frac{1}{4}K + \frac{1}{2}s - k'') S(\frac{1}{4}K + \frac{1}{2}s + k'')$$

$$t(k, k'', Z_s) N(\kappa, k''; k', \kappa')$$

S -- nucleon propagator

t -- two-particle T matrix

$$\mathcal{K} = -\frac{1}{2}k' - \frac{1}{4}q - \frac{3}{4}q' \qquad \mathcal{K}_1 = \mathcal{K} - \frac{3}{4}q$$

$$\mathcal{P} = k' - \frac{1}{6}q - \frac{1}{2}q' \qquad \mathcal{P}_1 = \mathcal{P} + \frac{1}{2}q$$

$$Z_{qp} = \frac{1}{2}K + \frac{2}{3}q + p$$

$$Z_s = \frac{1}{2}K + s$$

Integral equation for two-particle t matrix

$$t = v + \int vGt$$

#### Difference between relativistic and non-relativistic cases

replacement of nonrelativistic Green's functions by scalar nucleon propagators

$$g_0(Z) = (Z - H_0)^{-1} \longrightarrow G_{ij}(Z) = (k_i^2 - m_N^2)^{-1} (k_j^2 - m_N^2)^{-1}$$

replacement of 3-momenta by 4-momenta

$$t(\mathbf{k_1}; \mathbf{k_2}) \longrightarrow t(k_1^0, \mathbf{k_1}; k_2^0, \mathbf{k_2})$$

$$v(\mathbf{k_1}; \mathbf{k_2}) \longrightarrow v(k_1^0, \mathbf{k_1}; k_2^0, \mathbf{k_2})$$

$$M(\mathbf{k_1}; \mathbf{k_2}; \mathbf{k_3}) \longrightarrow M(k_1^0, \mathbf{k_1}; k_2^0, \mathbf{k_2}; k_3^0, \mathbf{k_3})$$

replacement of 3-momentum integration by

4-momentum integration

$$\int d^3k \longrightarrow \int d^4k$$

## Separable potential of NN interaction

$$v(k, k') = \lambda g(k)g(k')$$

$$g(k) = 1/(k^2 - \beta^2 + i0) \qquad \text{monopole}$$

$$g(k) = 1/(k^2 - \beta^2 + i0)^2$$
 dipole

|                  | Parameter                   | Y        | Y2             |
|------------------|-----------------------------|----------|----------------|
| $   ^{1}S_{0}  $ | $\beta \text{ (GeV)}$       | 0.228302 | 0.336          |
|                  | $\lambda  (\mathrm{GeV^4})$ | -1.12087 | $-0.071436^a$  |
| $3S_{1}$         | $\beta \text{ (GeV)}$       | 0.279731 | 0.4            |
|                  | $\lambda \; (\text{GeV}^4)$ | -3.1548  | $-0.3857451^a$ |

 $^{a}$  GeV<sup>8</sup>

## Separable two-particle matrix

$$t = v + \int vGt$$
  $\longrightarrow$   $t(k, k', s) = \tau(s)g(k)g(k')$ 

$$\tau(s) = \left[\frac{1}{\lambda} - \frac{i}{4\pi^3} \int_{-\infty}^{\infty} dk_0 \int_{0}^{\infty} k^2 dk g^2(k_0, k) G(k_0, k; s)\right]^{-1}$$

## Equation with the separable potential

$$T_{M}(k, p, q) = g(k)Q(p, q)$$

$$M(k, p; k', p') = 2\tau(Z_{qp})g(k)g(k')[(2\pi)^{4}\delta(p - p') + \tau(Z_{qp'})X(p, p')]$$

$$T_{N}(k, \kappa, s) = g(k)R(\kappa, s)$$

$$N(k, \kappa; k', \kappa') = 2\tau(Z_{s})g(k)g(k')[(2\pi)^{4}[\delta(\kappa - \kappa') + \delta(\kappa + \kappa')] + \tau(Z_{s})Y(\kappa, \kappa')]$$

$$\frac{Q(p,q) = \tau(Z_{qp})}{\int \frac{dq'}{(2\pi)^4} [X(p, \frac{1}{3}q + q')Q(q + \frac{1}{3}q', q') + X(p, -\frac{2}{3}q + q')R(q - \frac{1}{2}q', q')]}{R(\kappa, s) = 2\tau(Z_s)}$$

$$\int \frac{dq'}{(2\pi)^4} Y(\kappa, \frac{1}{2}s + q')Q(-s - \frac{2}{3}q', q')$$

System of integral equations for Q and R

$$X(p,p') = U(p,p') + \int \frac{d^4p''}{(2\pi)^4} U(p,p'') \tau(Z_{qp''}) X(p'',p')$$
$$Y(\kappa,\kappa') = W(\kappa,\kappa') + \int \frac{d^4\kappa''}{(2\pi)^4} W(\kappa,\kappa'') \tau(Z_s) Y(\kappa'',\kappa')$$

Integral equations for X and Y

$$U(p, p') = S(\frac{1}{4}K + \frac{1}{3}q - p')S(\frac{1}{4}K + \frac{1}{3}q + p + p')g(\frac{1}{2}p + p')2g(p + \frac{1}{2}p')$$

$$W(\kappa, \kappa') = S(\frac{1}{4}K + \frac{1}{2}s - \kappa')S(\frac{1}{4}K + \frac{1}{2}s + \kappa')g(\kappa)g(\kappa')$$

#### Partial states

$$Q_{i}(p,q) = \tau_{i}(Z_{qp})$$

$$\sum_{j} \int \frac{dq'}{(2\pi)^{4}} [X_{ij}(p, \frac{1}{3}q + q')Q_{j}(q + \frac{1}{3}q', q') + X_{ij}(p, -\frac{2}{3}q + q')R_{j}(q - \frac{1}{2}q', q')]$$

$$R_{i}(\kappa, s) = 2\tau_{i}(Z_{s})$$

$$\int \frac{dq'}{(2\pi)^{4}} Y_{ii}(\kappa, \frac{1}{2}s + q')Q_{i}(-s - \frac{2}{3}q', q')$$

$$i, j = {}^{1} S_0, {}^{3} S_1$$

$$X_{ij}(p,p') = U_{ij}(p,p') + \sum_{k} \int \frac{d^4p''}{(2\pi)^4} U_{ik}(p,p'') \tau_k(Z_{qp''}) X_{kj}(p'',p')$$

$$Y_{ii}(\kappa, \kappa') = W_{ii}(\kappa, \kappa') + \int \frac{d^4 \kappa''}{(2\pi)^4} W_{ii}(\kappa, \kappa'') \tau_i(Z_s) Y_{ii}(\kappa'', \kappa')$$

$$U_{ij}(p,p') = C_{ij}S(\frac{1}{4}K + \frac{1}{3}q - p')S(\frac{1}{4}K + \frac{1}{3}q + p + p')g_i(\frac{1}{2}p + p')2g_j(p + \frac{1}{2}p')$$

$$W_{ii}(\kappa,\kappa') = S(\frac{1}{4}K + \frac{1}{2}s - \kappa')S(\frac{1}{4}K + \frac{1}{2}s + \kappa')g_i(\kappa)g_i(\kappa')$$

$$C_{ij} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{1}{4} \end{pmatrix}$$

Spin-isospin recoupling coefficient

## Singularities. Wick rotation

Poles from propagators S

$$p_0^{\prime\prime 1,2} = \frac{1}{4}K_0 + \frac{1}{3}q_0 \pm \left[E(|\frac{1}{3}\boldsymbol{q} - \boldsymbol{p}^{\prime\prime}|) - i\epsilon\right]$$

$$p_0''^{3,4} = -$$

$$p_0''^{3,4} = -\frac{1}{4}K_0 - \frac{1}{3}q_0 - p_0 \pm \left[E(|\frac{1}{3}\boldsymbol{q} + \boldsymbol{p} + \boldsymbol{p}''|) - i\epsilon\right]$$

Poles from potential (g)

$$p_0''^{5,6} = -2p_0 \pm 2[E_\beta(|\mathbf{p} + \frac{1}{2}\mathbf{p}''|) - i\epsilon]$$

$$p_0''^{7,8} = -\frac{1}{2}p_0 \pm \frac{1}{2}[E_\beta(|\frac{1}{2}\boldsymbol{p} + \boldsymbol{p}''|) - i\epsilon]$$

Poles from tau

$$p_0''^{9,10} = -\frac{1}{2}K_0 - \frac{2}{3}q_0 - p_0 \pm \left[\left|\frac{2}{3}\boldsymbol{q} + \boldsymbol{p}''\right| + M_d^2 - i\epsilon\right]^{\frac{1}{2}}$$

Cuts from tau

$$p_0^{\prime\prime 11,12} = -\frac{1}{2}K_0 - \frac{2}{3}q_0 - p_0 \pm \left[ \left| \frac{2}{3}\boldsymbol{q} + \boldsymbol{p}^{\prime\prime} \right| + 4m^2 - i\epsilon \right]^{\frac{1}{2}}$$





 $\text{Im } p_0$ 

$$Q(p,q) = \int \frac{dq'}{(2\pi)^4} \tau(K_{qp}) X(p,q/3+q',K_q) Q(q+\frac{1}{3}q',q')$$

$$X(p, p''; K_q) = U(p, p''; K_q) + \int dp' U(p, p'; K_q) \tau(K_{qp'}) X(p', p''; K_q)$$

#### Iteration method

Homogeneous integral equation with parameter in our case parameter - bound state energy

#### solvability condition

$$\lim_{i \to \infty} \frac{Q_i(p, q)}{Q_{i+1}(p, q)} = 1$$

#### Convergence of iteration method



Convergence of the ratio of two subsequent iterations with an increase in the iteration number (i)

#### Search of bound state energy



Ratio of two subsequent iterations as a function of parameter value(bound state energy in our case)

Parameter value(bound state energy) at which:

$$\lim_{i \to \infty} \frac{Q_i(p, q)}{Q_{i+1}(p, q)} = 1$$

gives the true binding energy of the nucleus

#### q (q<sub>4</sub>) convergence



$$\int_{a}^{b} f(q)dq \to \sum_{i=1}^{N} f(q_i)a_i$$

q<sub>i</sub>,a<sub>i</sub> - nodes and weights of Gaussian quadrature

#### Result of calculation

#### NN potential Y

| State                                | Non-relativistic calculation | Relativistic calculation |
|--------------------------------------|------------------------------|--------------------------|
| $^{3}S_{1} \text{ w/o "}2+2"$        | 47                           | 58                       |
| $^{1}S_{0}$ , $^{3}S_{1}$ w/o "2+2"  | 19                           | 26                       |
| $^{3}S_{1}$ with "2+2"               | 75                           | 51                       |
| $^{1}S_{0}$ , $^{3}S_{1}$ with "2+2" | 34                           | 24                       |

#### NN potential Y2

| State                                    | Relativistic calculation |
|------------------------------------------|--------------------------|
| $^{3}S_{1} \text{ w/o "}2+2"$            | 51                       |
| $^{1}S_{0}$ , $^{3}S_{1}$ w/o "2+2"      | 24                       |
| $^{3}S_{1}$ with "2+2"                   | 45                       |
| ${}^{1}S_{0}$ , ${}^{3}S_{1}$ with "2+2" | 22                       |





Triton binding energy (Exp = 8.48 MeV)

|   | State                      | Y     | Y2    |
|---|----------------------------|-------|-------|
| , | ${}^{3}S_{1}$              | 25.26 | 22.99 |
|   | ${}^{1}S_{0}, {}^{3}S_{1}$ | 11.04 | 10.24 |

## **Summary**

- The Faddeev-Yakubovsky equation was generalized to the relativistic case;
- The equation was solved numerically by the iteration method;
- The binding energy value of helium 4 has been obtained.

#### **Outlook:**

- Using the found amplitudes of the state, calculate the form factors of the helium-4 nucleus;
- Calculation using more accurate multi-rank potentials.

## Thank you for your attention