

Hadronic resonance production with ALICE at the LHC

Sergey Kiselev (NRC "Kurchatov institute", Moscow)

- Motivation
- ALICE detector
- ALICE papers
- Recent results:

Summary

Motivation

• pp and p—Pb collisions:

- ✓ baseline for heavy-ion collisions
- ✓ system size dependence
- ✓ role of cold nuclear matter
- ✓ study of collectivity in small collision systems

• A–A collisions:

- ✓ in-medium energy loss
 - → nuclear modification factor for resonances
- ✓ restoration of chiral symmetry
 - → modification of width, mass and branching ratio
- ✓ regeneration and rescattering effects
 - → modification of measurable yield and ratios to longer-lived hadrons
 - → timescale between chemical and kinetic freeze-out

Resonance	cτ (fm)	Decay	System @ energy (TeV)
$\rho(770)^{0}$	1.3	ππ	pp/Pb–Pb @ 2.76
f ₁ (1710)	1.4	$K_S^{0}K_S^{0}$	pp @ 13.6
K*(892)0	4.2	Κπ	pp/p-Pb/Pb-Pb/Xe-Xe @ all energies
$K^*(892)^{\pm}$	4.2	$K_S^{\ 0} \pi$	pp @ 5.02/8/13 Pb-Pb @ 5.02
f ₀ (980)	~ 5	π π	pp @ 5.02/13 p-Pb @ 5.02
$\Sigma(1385)^{\pm}$	5-5.5	Λ π	pp @ 7/13 p–Pb/Pb–Pb @ 5.02
f ₁ (1285)	8.7	$K_S^0 K \pi$	pp @ 13
Λ(1520)	12.6	рК	pp @ 7 p–Pb @ 5.02 Pb–Pb@ 5.02
$\Xi(1530)^0$	21.7	Ξ- π	pp @ 7/13 p-Pb@ 5.02
$\Omega(2012)^-$	32	$\Xi^-K^0_S$	pp @ 13
φ(1020)	46.4	кк	pp/p–Pb/Pb–Pb/Xe–Xe @ all energies

ALICE detector in Run1, 2 configuration

V0:

- → triggering minimum bias collisions
- → centrality/multiplicity estimator

ITS: tracking and vertexing

TPC: tracking and PID through dE/dx

ALICE papers recent papers

1. PLB866(2025)139562

Measurement of $f_1(1285)$ production in pp collisions at $\sqrt{s}=13$ TeV

2. arXiv:2502.18063 (→ PRD)

Observation of the $\Omega(2012)$ baryon at the LHC

3. arXiv:2507.19332 (→ PLB)

Multiplicity dependence of $K^*(892)^{\pm}$ production in pp collisions at $\sqrt{s} = 13$ TeV

4. arXiv:2507.19347 (→ JHEP)

Multiplicity dependence of $f_0(980)$ production in pp collisions at $\sqrt{s} = 13 \text{ TeV}$

$K*(892)^0$, $\phi(1020)$

EPJC72(2012)2183 PRC91(2015)024609

EPJC76(2016)245

PRC95(2017)064606

PRC99(2019)024906

PLB802(2020)135225

PLB807(2020)135501

PRC102(2020)024912

EPJC81(2021)256

EPJC81(2021)584

PRC106(2022)034907

PRC107(2023)055201

EPJC83(2023)540

PRC109(2024)014911

15-20 Sep 2025

previous papers

$\Sigma(1385)^{\pm}, \Xi(1530)^{0}$

EPJC75(2015)1 EPJC77(2017)389 EPJC83(2023)351

JHEP5(2024)317

$\Lambda(1520)$

PRC99(2019)024905 EPJC80(2020)160

XXVI Baldin ISHEPP, Dubna, S.Kiselev

$\rho(770)^0$

PRC99(2019)064901

K*(892)±

PLB828(2022)137013 PRC109(2024)044902

 $f_0(980)$

PLB846(2023)137644 PLB853(2024)138665

$f_1(1285)$ in pp at 13 TeV

PLB866(2025)139562

quark structure of $f_1(1285)$ is still unknown possible configurations: u and d; u, d and s; tetraquark; hadronic molecules 10^9 minimum-bias pp events at 13 TeV

 $f_1(1285) \rightarrow K_S^0 K^{\pm} \pi^{\mp} (BR = 2.25\%)$

 $\tau = 8.7 \text{ fm/}c \rightarrow \text{regeneration and rescattering effects}$

$f_1(1285)$ in pp at 13 TeV

aligns with the linear trend with mass observed for other mesons

 \rightarrow f₁ may have an ordinary meson structure

 γ_s -CSM (PRC100(2019)054906, no rescattering effects):

- ϕ/π agrees with |S|=2
- f_1/π agrees with |S|=0
 - → f₁ is a conventional meson, disfavors the tetraquark hypothesis and aligns with LHCb findings (PRL112(2014)091802)

$\Omega(2012)$ in pp at 13 TeV

arXiv:2502.18063

Belle: first observation of $\Omega(2012)^- \rightarrow \Xi^0 K^-$ and $\Xi^- K_S^0$ (PRL121(2018)052003)

 $\tau = 32 \text{ fm/}c \rightarrow \text{regeneration and rescattering effects ?}$

ALICE: 10^9 HM-triggered pp events at 13 TeV, $dN_{ch}/d\eta$ (y=0) =31.5 (0-0.01% of c.s.)

 $\sim 7200 \ \Omega(2012)^{-} \rightarrow \Xi^{-} K_{S}^{0}$

first measurement of the $p_{\rm T}$ spectrum

$\Omega(2012)$ in pp at 13 TeV

arXiv:2502.18063

consistent with the previous measurements by Belle

$K^*(892)^{\pm}$ in pp at 13 TeV

arXiv:2507.19332

1.3 10⁹ minimum-bias pp events at 13 TeV

 $K^*(892)^{\pm} \to K_S^0 \pi (BR=0.33)$

 $\tau = 4.2 \text{ fm/}c \rightarrow \text{regeneration and rescattering}$

from low to high multiplicity collisions,

as for other hadron species.

$K*(892)^{\pm}$ in pp at 13 TeV

arXiv:2507.19332

for $K^*(892)^{\pm}$ and $K^*(892)^{0}$ both dN/dy and $\langle p_T \rangle$ are in agreement within uncertainties

dN/dy:

- an approximately linear increase
- well described by EPOS-LHC PYTHIA and DIPSY tend to overestimate (p_T) :
 - increase with saturation

$\langle p_{\rm T} \rangle$:

- increase with saturation
- EPOS-LHC underestimates PYTHIA largely underpredicts DIPSY more pronounced increase

EPOS-LHC PRC92(2016)034906 PYTHIA6 PRD82(2010)074018 PYTHIA8 EPJC74(2014)3024 DISPY JHEP8(2011)103

15-20 Sep 2025

$K^*(892)^{\pm}$ in pp at 13 TeV

suppression at a $\sim 7\sigma$ level passing from low to high multiplicity pp collisions (taking into account the multiplicityuncorrelated uncertainties), $\sim 2\sigma$ level for K*⁰ a low $p_{\rm T}$ dominant process for $p_T \lesssim 2 \text{ GeV}/c$, the double ratio deviates from unity by more than 3 σ

- suggest the presence of a finite lifetime hadronic phase
- but EPOS-LHC without a hadronic phase reproduces the decreasing trend

f₀(980) in pp at 13 TeV

arXiv:2507.19347

quark structure of f_0 is still unknown possible configurations: qqbar, (qq)(qbar qbar),

hadronic molecules, ...

2 10⁹ minimum-bias pp events at 13 TeV

 $f_0(980) \to \pi^+\pi^- (BR=?)$

 $\tau \sim 5 \text{ fm/}c \Rightarrow \text{regeneration and rescattering}$ effects

in p_T < 4 GeV/c spectra become harder from low to high multiplicity collisions, as for other hadron species.

$f_0(980)$ in pp at 13 TeV

arXiv:2507.19347

as for other hadron species,

yields: independent of collision system

appear to be driven by event multiplicity

mean p_T : pp vs p-Pb - steeper increase with multiplicity

$f_0(980)$ in pp at 13 TeV

arXiv:2507.19347

ALICE, pp $\sqrt{s} = 13 \text{ TeV}$ -0.5 < y < 0.5 -0.6 < y

 f_0/π : decreases with increasing multiplicity \rightarrow rescattering is the dominant effect, exists at low p_T

 f_0/K^{*0} : decreases with increasing multiplicity τ (f_0)~ 5 fm/c close to $\tau(K^{*0}) = 4.2$ fm/c differs by decay products $f_0 \rightarrow \pi\pi$, $K^{*0} \rightarrow K\pi$ if $\sigma_{\pi\pi} > \sigma_{K\pi}$ the rescattering effect for f_0 may be stronger than for K^{*0}

 γ_s -CSM (PRC100(2019)054906, no rescattering effects):

- not reproduces the ratios at low multiplicity
- predictions with zero hidden strangeness, |S|=0, are closer to the data

Run 3

```
ITS →ITS2: improved pointing resolution (~35 μm at 1 GeV/c)
TPC/MWPC → TPC/GEM: reduce the ion backflow and resulting space charge in the drift volume high rates up to 50 kHz in Pb-Pb with continuous readout
FT0A (3.5 < η < 4.9) and FT0C (-3.3 < η < -2.1): precise timing for continuous readout, centrality estimation, event selection, and collision time.</li>
continuous readout
a novel online-offline software framework (O2)
```

K*(892)⁰ and φ flow: model predictions

hadronic interactions modify resonance flow

- no changes for φ flow 15-20 Sep 2025

XXVI Baldin ISHEPP, Dubna, S.Kiselev

systematically increasing flow with longer duration of hadronic phase only for K*0

$K^*(892)^0$ and ϕ flow in Pb-Pb at 5.36 TeV

Enhanced statistics in Run 3 (~6.5 10⁹ analyzed events)

- precise measurement of φ
- first measurement of $K^*(892)^0$

for short-lived particles: invariant mass fit method PRC70(2004)064905

both $K^*(892)^0$ and ϕ :

- mass ordering at low $p_{\rm T}$
- baryon-meson grouping at higher $p_{\rm T}$

15-20 Sep 2025

XXVI Baldin ISHEPP, Dubna, S.Kiselev

$K^*(892)^0$ and ϕ flow in Pb-Pb at 5.36 TeV

higher $K^*(892)^0$ flow than ϕ flow

- sizable difference at low $p_{\rm T}$
- consistent at intermediate $p_{\rm T}$
- discrepancy more significant in 30–40% than 40–50%
- model with hadronic phase describes the trend

$f_0(1710)$ in pp at 13.6 GeV

Lattice QCD calculations predict the mass of the lightest scalar glueball:1500 -1800 MeV, with $J^{PC}=0^{++}$. Candidates $f_0(980)$, $f_0(1370)$, $f_0(1500)$, and $f_0(1710)$.

~ 5 10^{10} min-bias pp events at 13.6 TeV $f_0(1710) \rightarrow K_S^0 K_S^0$

Summary

pp @ 13 TeV

- f_1 (1285) $\langle p_T \rangle$ aligns with the linear trend with mass observed for other mesons \rightarrow f_1 may have an ordinary meson structure
- $\Omega(2012)^-$ mass and width of are consistent with the previous measurements by Belle first measurement of a spectrum
- K*(892)[±] the first evidence of a K*/K suppression measured in pp collisions EPOS-LHC without any hadronic afterburner is able to reproduce the measured suppression.
- f_0 (980) both the f_0/π and f_0/K^{*0} ratios decrease with increasing multiplicity
 - f_0/π suppression could be explained by the dominance of the rescattering effect
 - the rescattering effect for f_0 can be stronger than for K^{*0} if $\sigma_{\pi\pi} > \sigma_{K\pi}$

Pb-Pb @ 13.6 TeV

♦, K*0 - the elliptic flow for \$\phi\$ and K*0 follow mass ordering at low \$p_T\$ and baryon-meson grouping at intermediate \$p_T\$
 → participate in the collective expansion of the medium and undergo hadronization via quark coalescence in QGP

pp @ 13.6 TeV

 f_0 (1710) - mass and width are close to the PDG values