

Development of a New Silicon Tracking Station for the BM@N Central Tracker

Dementev Dmitrii for BM@N STS team

Outline

□ BM@N Experiment at NICA;
 □ Central Tracking System of BM@N Experiment;
 □ New silicon tracking station (STS);
 □ STS module;
 □ Results of the in-beam tests of the module;
 □ Integration of the readout electronics and mechanics;

Baryonic Matter at Nuclotron (BM@N)

BM@N is the first experiment put into operation at NICA, aimed at studying dense nuclear matter in heavy-ion collisions within the energy range of 1-4.65 AGeV.

The research program of BM@N includes:

- ☐ Scouting the location of transition between hadronic and partonic dominated matter;
- ☐ Probing the EoS at neutron star core densities;
- ☐ Searching the critical endpoint of a possible 1st order phase transition at Nuclotron energies;
- \square Study of the ΛN , ΛNN , and $\Lambda \Lambda N$ interactions

Central Tracking System of BM@N Experiment

+ Beam pipe

FSD half-plane without shielding

- Strip pitch p^+/n^+ : 95/103 µm;
- Stereo angle: 2.5°;
- Total area: $0.3 m^2$;
- Number of channels: ~54k.

GEM planes

- Strip pitch: 800 μm;
- Stereo angle: 15°;
- Total area: 9.6 m^2 ;
- Number of channels: ~12.5k.

- Reconstruction eff. > 90% for primaries
- $\Delta p/p < 2\%$ for p>0.5 Gev/c

New Silicon Tracking station

- ➤ Midrapidity tracking
- ➤ Reconstruction of Ξ decay
- \Box Strip pitch: 58 μ m;
- ☐ Stereo angle: 7.5°;
- □ Number of channels: ~12k.

Photo of the station installed inside SP-41 Magnet

STS Tracking module

Features of the module

Sensor parameters:

 \square Size: 6.2×6.2 cm²;

 \Box Thickness: 320 μm;

☐ Num. of Strips: 1024

 \square Pitch: 58 μ m;

☐ Stereo angle: 7.5 deg;

☐ In-build AC-coupling;

☐ Sec. metal layer at p-side

STS-XYTER ASIC

STS-XYTER v.2.2 ASIC

- ☐ 128 channels;
- ☐ Data driven architecture;
- \Box 5 bit ADC, TDC < 10 ns;
- ☐ Shaping time 80-120 ns (Slow Shaper for Amp.);
- ☐ Back-end interface : 5 e-link per ASIC with AC coupling.
- ☐ Up to 47 Mhit/s/ASIC @ 320 Mbps/link

Module assembly

A. Sheremetev, PhD Thesis

In-beam tests at PNPI

Tests with 1 GeV & 200 MeV proton beams at SC-1000:

- Study of the tracking performance of DSSD sensors;
- Merging of the data from two different subsystems

Beam telescope

Signal Amplitude (p & n)

Beam profile

Signal-to-Noise Ratio

Signal/Noise distribution for 1GeV protons

SRIM: $Signal_{MIP} = 0.92 \times Signal_{1 GeV protons}$

- *p*-strips *SNR_{MIP}*: 28 30.5;
- *n*-strips *SNR_{MIP}*: 21 24.5;
- z-strips SNR_{MIP} : 8 13;

Spatial Resolution and Efficiency

$$\sigma_{X,U}$$
= 15.4 ± 0.4 µm
 σ_{Y} = 170 ± 4µm
eff. > 99%

Time resolution

$$\sigma_{tot} = \sigma_{Jitter} \oplus \sigma_{TDC} \oplus \sigma_{Time\ Walk}$$

$$\sigma_{tot} =$$
 9.9 ns

Readout electronics

Scheme of the Data Acquisition System

- > Trigger rates up to 78 kHz;
- \rightarrow Hit rates of 3.6 \times 10⁵ hits s⁻¹ cm⁻²

STS server node in the BM@N data center

STS rack

STS half-planes

Water cooling (tot. power dissipation ~150 W)

Integration and Allignment

Station was installed and aligned with an accuracy of 0.3 mm; Position of the sensors was measured with an accuracy of 0.1 mm

4x alignment marks per half-station

Measuring of the station position

Conclusion

- The modules demonstrated stable operation, high signal-to-noise ratios, spatial resolution of \sim 15 µm, and registration efficiency above 99% for regular strips.
- Integration of the data-driven readout system of the BM@N silicon tracking station with the global BM@N DAQ has been successfully achieved, supporting trigger rates up to 78 kHz in the triggered configuration and handling hit rates of $3.6 \times 10^5 \, \text{s}^{-1} \, \text{cm}^{-2}$
- A new Silicon tracking station was installed and aligned with a precision of 0.3 mm.

Ru-106 source, positions are below the STS-plane

Thank you for your attention!

