# DD-pair production in the Parton Reggeization Approach within SPS and DPS scenarios

<sup>1</sup>Alimov L., <sup>1,2</sup>Saleev V.

<sup>1</sup>Samara University

<sup>2</sup> Joint Institute for Nuclear Research

The XXVIth International Baldin Seminar (2025)

#### **Outline**

- Introduction
- High-energy factorization
- Unintegrated parton distribution functions
- Advantages of the Parton Reggeization Approach
- Fragmentation mechanism
- SPS and DPS charm production
- Results
  - $\bullet$  SPS production of quark pairs:  $gg \to c\bar c c\bar c$
  - ullet Fitting  $\sigma_{\it eff}$  to LHCb data
  - $\bullet$  Prediction for the LHC  $\sqrt{s}=13$  TeV central and forward region

#### Introduction

- Open-charm production constitutes a stringent test of next-to-leading-order (NLO) pQCD  $(\alpha_S(m_c)\ll 1)$
- Single parton scattering (SPS) calculations alone fail to reproduce the measured DD production
- Description may also include either gluon to charm-quark fragmentation or double parton scattering (DPS) contributions [Maciuła, Saleev, Shipilova, Szczurek 2016]
- The usage of gluon-to-charm fragmentation, however, includes double-counting issues and the limited range of validity of the gluon fragmentation function [Karpishkov, Nefedov, Saleev, Shipilova 2016]
- We study pair- $D^0D^0$  production in the Parton Reggeization Approach (PRA). The charm-quark mass  $c \to D^0$  effects in fragmentation are taken into account.

#### High-energy factorization

Parton Reggeization approach (PRA) is a scheme of  $k_T$ -factorization, which is based on the modified multi-Regge kinematics (mMRK) approximation of the QCD  $\Lambda_{QCD} \ll \mu \ll \sqrt{s}$ . [Nefedov, Saleev, Shipilova 2013] [Karpishkov, Nefedov, Saleev 2017] [Nefedov, Saleev 2020]

The cross section is written as a convolution:

$$\begin{split} d\sigma^{PRA}(pp \to D^0D^0) = \sum_{a,b} \int \frac{dx_1}{x_1} \frac{d^2q_{1T}}{\pi} \int \frac{dx_2}{x_2} \frac{d^2q_{2T}}{\pi} \, \Phi_a(x_1,q_{1T}^2,\mu^2) \Phi_b(x_2,q_{2T}^2,\mu^2) \times \\ \times d\hat{\sigma}^{PRA}(ab \to D^0D^0) \end{split}$$

$$q_{1,2}^{\mu} = x_{1,2} P_{1,2}^{\mu} + q_{1,2T}^{\mu}, \quad q_{1,2T}^2 = -\vec{q}_{1,2T}^2 \neq 0$$

where a, b denotes the parton types  $R,Q,\bar{Q}$  in the partonic subprocesses.

 $\Phi_{a,b}(x,q_T^2,\mu^2)$  is modified Kimber-Martin-Ryskin-Watt (mKMRW) PDFs with exact normalization:

$$\int_{0}^{\mu^{2}} dq_{T}^{2} \Phi_{a}(x, q_{T}^{2}, \mu^{2}) = x f_{a}(x, \mu^{2})$$



#### KMR modification

The exact normalization condition is equivalent to:

$$\Phi_a(x,t,\mu^2) = \frac{d}{dt} \left[ T_a(t,\mu^2,x) \tilde{f}_a(x,t) \right],$$

where  $\tilde{f}_a(x,t)=xf_a(x,t)$ ,  $T_a(t,\mu^2,x)$  is usually referred to as Sudacov form-factor, satisfying the boundary conditions  $T_a(t=0,\mu^2,x)=0$  and  $T_a(t=\mu^2,\mu^2,x)=1$ ,  $t=q_T^2$  is negative initial parton mass.

By obtaining uPDF through the factorization and requiring equality with KMR prescription, the  $T_a(t, \mu^2, x)$  solution can be derived:

$$T_{a}(t,\mu^{2},x) = \exp \left[ -\int\limits_{t}^{\mu^{2}} \frac{dt'}{t'} \frac{\alpha_{S}(t')}{2\pi} \left( \tau_{a}(t',\mu^{2}) + \Delta \tau_{a}(t',\mu^{2},x) \right) \right]$$

with 
$$au_{a}(t,\mu^{2})=\sum_{b}\int\limits_{0}^{1}dz\;zP_{ba}(z)\theta(\Delta(t,\mu^{2})-z),\qquad \Delta(t,\mu)=rac{\mu}{\mu+\sqrt{t}}$$

$$\text{and with } \Delta \tau_{a}(t,\mu^{2},x) = \sum_{b} \int\limits_{0}^{1} dz \; \theta(z-\Delta(t,\mu^{2})) \left[ z P_{ba}(z) - \frac{\tilde{f}_{b}(\frac{x}{z},t)}{\tilde{f}_{a}(x,t)} P_{ab}(z) \theta(z-x) \right]$$

#### PRA advantages

The Reggeized parton amplitudes are described by Lipatov's gauge-invariant effective field theory (EFT) [Lipatov 1995]. There is an exact collinear limit:

$$\lim_{q_{\mathbf{1}T},q_{\mathbf{2}T}\to 0}\int \overline{|M|^2}_{PRA} \frac{d\phi_1 d\phi_2}{(2\pi)^2} = \overline{|M|^2}_{CPM}$$

The PRA smoothly interpolates between small and large  $p_T$  and coincides with the CSS approach at  $p_T \ll \mu$ .

Advantages of mMRK uPDFs over KMRW uPDFs:

- ullet The Sudacov form-factor depends on x
- KMRW is only for gluons, mMRK includes gluons and quarks
- ullet Due to the elimination of certain discrepancies, the condition  $x\ll 1$  becomes less strict.

The PRA has demonstrated its effectiveness in describing various single– and pair–production processes with D-mesons.

- ullet Inclusive  $D^0$ ,  $D^+$ ,  $D^{*+}$ ,  $D^+_s$  production [Karpishkov, Nefedov, Saleev, Shipilova 2015]
- ullet  $J/\psi(\Upsilon)$  and D [Saleev, Chernyshev 2024][2024]

# Fragmentation mechanism

Hadronization is described using fragmentation functions (FFs):

$$d\hat{\sigma}(ab \to D^0 D^0) = P_{c \to D^0}^2 \times \int_{z_1^{min}}^1 dz_1 D_{c \to D^0}(z_1) \int_{z_2^{min}}^1 dz_2 D_{c \to D^0}(z_2) d\sigma(ab \to ccX)$$

with  $z_{1,2}^{min} = m_{D^0}/(E_c + |\vec{p}|_c)$ .

$$z = \frac{E_{D0} + |\vec{p}|_{D0}}{E_c + |\vec{p}|_c}$$

z provides a link between quark and hadron momenta,  $P_{c\to D^0}=0.542$  is fragmentation probability [H1 and ZEUS 1999].

The fragmentation approach works fairly well at  $p_T\gg 1$  GeV, but has difficulty at  $p_T\sim m_c$ . We use FF with Peterson parametrization:

$$D_{c \to D^{0}}(z) = \frac{N}{z(1 - \frac{1}{z} - \frac{\epsilon}{1-z})^{2}}$$

where N is a normalization factor (to unity), and with  $\epsilon = 0.06$ .



#### SPS open charm production

Combining the formulas for cross-section factorization and the fragmentation approach:

$$d\sigma^{\textit{SPS}}(\textit{pp} \rightarrow \textit{D}^{0}\textit{D}^{0}) = \textit{P}^{2}_{\textit{c} \rightarrow \textit{D}^{0}} \times \textit{D}_{\textit{c} \rightarrow \textit{D}^{0}}(\textit{z}_{1}) \otimes \textit{D}_{\textit{c} \rightarrow \textit{D}^{0}}(\textit{z}_{2}) \otimes \sum_{\textit{a},\textit{b}} \Phi_{\textit{a}} \otimes \Phi_{\textit{b}} \otimes d\hat{\sigma}^{\textit{PRA}}(\textit{ab} \rightarrow \textit{c}\bar{\textit{c}})$$

Subprocesses taken into account:

gluon fusion 
$$RR o c\bar c c\bar c$$
 quark-antiquark annihilation  $Q\bar Q o c\bar c c\bar c$ 

Strongly suppressed subprocesses:

charm excitation  $RQ_c o gccar{c}$ 

#### DPS open charm production

The DPS cross section is expressed as a product of two SPS cross sections:

$$d\sigma^{DPS}(pp o D^0D^0) = rac{d\sigma^{SPS}(pp o D^0X) imes d\sigma^{SPS}(pp o D^0X)}{S \cdot \sigma_{eff}}$$

where S=2 is the symmetry factor,  $\sigma_{\it eff}$  is an effective parameter that controls the DPS mechanism contribution.

At similar energies, the effective DPS cross-sections have comparable values:

- ullet Based on Pair- $J/\psi$ ,  $J/\psi \Upsilon$ ,  $\Upsilon \Upsilon$  fit  $\sigma_{\it eff}=11.0\pm0.2$  mb [Chernishev, Saleev 2022]
- In this research we estimate  $\sigma_{eff}=9.3^{+0.5}_{-0.4}$  mb based on the available  $D^0D^0$  mesurements [LHCb 2012].

Subprocesses taken into account:

gluon fusion 
$$RR \to c\bar{c} \otimes RR \to c\bar{c}$$
 quark-antiquark annihilation  $Q\bar{Q} \to c\bar{c} \otimes Q\bar{Q} \to c\bar{c}$  mixed  $RR \to c\bar{c} \otimes Q\bar{Q} \to c\bar{c}$ 

Strongly suppressed subprocesses:

charm excitation  $RQ_c \rightarrow gc \otimes \dots$ 



#### Numerical equipment

- Parton-level Monte-Carlo generator KaTie
- It has been verified that the  $\overline{|M|^2}$  calculated at AvhLib coincide with obtained using the Lipatov's EFT feinman rules at the tree-level.
- We use uPDFs with exact normalization based on mstw2008lo collinear PDF's set.

#### Quark comparison





$$\sqrt{s} = 7 \text{ TeV}$$

CPM cross section  $\simeq k_T$ -factorization cross section  $\simeq$  PRA cross section

SPS using CPM (gray) and SPS using  $k_T$  (black) was taken from [van Hameren, Maciuła, Szczurek 2015].

# LHCb $\sqrt{s} = 7$ TeV for $\sigma_{eff}$ fitting





LHC 
$$\sqrt{s} = 7$$
 TeV,  $2 < y < 4$ ,  $p_{TD} > 3$  GeV [LHCb 2012]

Calculations using  $k_T$  factorization ( $\sigma_{eff}=11$  mb) [van Hameren, Maciuła, Szczurek 2015]

Fit the experimental data and extract  $\sigma_{\it eff} = 9.3^{+0.5}_{-0.4}~\rm mb$ 

$$\sigma^{SPS} = 0.05 \ \mu b, \ \sigma^{DPS} = 0.7 \ \mu b, \ \sigma = 0.75^{+1.72}_{-0.51} \ \mu b$$

### LHCb $\sqrt{s} = 7$ TeV





LHC  $\sqrt{s} = 7$  TeV, 2 < y < 4,  $p_{TD} > 3$  GeV [LHCb 2012]

Fit the experimental data and extract  $\sigma_{\it eff} = 9.3^{+0.5}_{-0.4}~\rm mb$ 

$$\sigma^{\textit{SPS}} = 0.05~\mu \textit{b},~\sigma^{\textit{DPS}} = 0.7~\mu \textit{b},~\sigma = 0.75^{+1.72}_{-0.51}~\mu \textit{b}$$



### LHCb forward region prediction





LHC 
$$\sqrt{s} = 13$$
 TeV,  $2 < y < 4$ ,  $p_{TD} > 3$  GeV  $\sigma^{SPS} = 0.09~\mu b$ ,  $\sigma^{DPS} = 2.6~\mu b$ ,  $\sigma = 2.7^{+5.1}_{-1.9}~\mu b$ 



### LHCb forward region prediction





LHC 
$$\sqrt{s} = 13$$
 TeV,  $2 < y < 4$ ,  $p_{TD} > 3$  GeV  $\sigma^{SPS} = 0.09~\mu b$ ,  $\sigma^{DPS} = 2.6~\mu b$ ,  $\sigma = 2.7^{+5.1}_{-1.9}~\mu b$ 



# LHC central region prediction





LHC 
$$\sqrt{s}=13$$
 TeV,  $|y|<2$ ,  $\rho_{TD}>3$  GeV  $\sigma^{SPS}=0.5~\mu b,~\sigma^{DPS}=15.5~\mu b,~\sigma=20.0^{+26.5}_{-9.7}~\mu b$ 

### LHC central region prediction





LHC 
$$\sqrt{s}=13$$
 TeV,  $|y|<2$ ,  $\rho_{TD}>3$  GeV  $\sigma^{SPS}=0.5~\mu b,~\sigma^{DPS}=15.5~\mu b,~\sigma=20.0^{+26.5}_{-9.7}~\mu b$ 

#### **Summary**

- Our PRA-based calculations demonstrate good agreement with the experimental data on  $D^0D^0$  production at  $\sqrt{s}=7$  TeV.
- The results obtained in the PRA are consistent with previous calculations performed in [van Hameren, Maciula, Szczurek 2015].
- Has also been demonstrated the applicability of the mMRK uPDFs [Nefedov, Saleev 2020]
- The value  $\sigma_{eff} = 9.3^{+0.5}_{-0.4}$  mb was extracted from a fit to the experimental data on  $D^0D^0$  pair production at  $\sqrt{s} = 7$  TeV.
- Predictions for the production cross sections at the current LHC energy of  $\sqrt{s}=13$  TeV have been obtained for both the central and forward kinematic regions.

# Thank you for your attention!

