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Introduction: a role of hadronization in EAS hadronic interactions physics

The “Muon Puzzle”: an excess of muons in EAS 
induced by UHECR in comparison to predictions from 
simulations

From J.C. Arteaga-Velázquez, ICRC-2023

• Need to increase muon number, but not 𝑒±, 𝛾
➢ An important parameter of hadronic interactions:

𝑅 =
𝐸e/m

𝐸hadr
• To decrease 𝑅:

➢ Enhance heavier quarks production
➢ Enhance baryon/meson resonances production
➢ Suppress leading 𝜋0 formation

➢ Modify hadronization process, but how?

• Usually, string fragmentation is seen universal for all 
colliding systems and energies:

A string is stretched from q to q moving apart along one line

String breaks by pair production

𝐸1, Ԧ𝑝1 = 𝑧 𝐸0, Ԧ𝑝0 𝐸2, Ԧ𝑝2 = 1 − 𝑧 𝐸0, Ԧ𝑝0

𝐸0, Ԧ𝑝0

𝑡

o 𝑧 is sampled universally for all collisions

• Break string fragmentation universality:
➢ Collective effects (used in EPOS core-corona approach)

➢ Consider angular momentum + more general rules for 
string-to-hadron transition
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General idea

• Add angular momentum of the string to account for the 
impact parameter of color-connected partons

𝑏

• A difference between colliding systems emerges:

𝐽𝑒+𝑒− < 𝐽ℎℎ < 𝐽ℎ𝐴 < 𝐽𝐴𝐴

𝐽 = 𝐽(𝑏)

*note that, as only classical string model is used for hadron 
production, it forces considering angular momentum for 𝑒𝑒
system too

• A simple example of hadron production change from 
angular momentum conservation:

A parameter configuration space of the string break point:

AM is conserved

Suitable string mass

Suitable string mass

AM is conserved

1 GeV

1 GeV

2 GeV-1
Try to fragment and 
produce hadron from 
daughter string

𝜋-meson 𝜌-meson

𝜏 𝜏

𝜎 𝜎
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New string hadronization model: ATROPOS
• Use the Nambu-Goto string theory:

𝑆string = −𝜅 න

𝜏1

𝜏2

ⅆ𝜏 න

𝜎1 𝜏

𝜎2 𝜏

ⅆ𝜎 ሶ𝑥𝑥′ 2 − ሶ𝑥2𝑥′2

• Main task: find a way to properly define the initial 
conditions …
𝑥𝜇 𝜏 = 0, 𝜎 ≡ 𝜌𝜇 𝜎 ,  𝜕𝑥𝜇/𝜕𝜏 𝜏 = 0, 𝜎 ≡ 𝑣𝜇 𝜎

• … and develop a model for fragmenting this string.

➢ Use the Virasoro conditions for that

*** Skip the long and boring mathematics ***

For the strict and detailed derivation of the basics 

of the ATROPOS string model, see

https://doi.org/10.48550/arXiv.2504.08968

Result:
• A string is modeled as a rotating rigid rod

𝜌𝜇 𝜎 , 𝑣𝜇 𝜎 ~ cos 𝜈𝜎

𝜈: eigenharmonic of the string

𝐽 =
1

𝜈

𝑀2

2𝜅𝜋

• Unable to find other possible configurations!

• Taking 𝜈 > 1 can be seen as “folding” of the string:

𝜈 = 3

“joints” 𝜈 − 1 times folded

* colors are used to highlight different segments of the string; the choice of colors is arbitrary

AM is reduced 
for given mass

Parameter 𝜈 is used to define AM of the system
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String fragmentation

• Daughter strings must satisfy the 
Virasoro conditions too

➢ Countable set of break points!!

• Since each segment of the string has a 
total momentum of 0, new strings are 
produced at rest in the CM system

➢ Unrealistic particle production for 
𝑒+𝑒− collisions

➢ Need to add energy release to the 
fragmentation scheme

➢ Make a chunk of the string 
disappear and then redistribute 
energy and momentum between 
string pieces

Allowed break points 𝜎break =
𝑟𝜋

𝜈

String cannot break between these 
points – Virasoro conditions will be 
violated for daughters!

𝑟 is an integer cut factor

➢ The length of the 
daughter strings 
remains the same as 
those for the mother Ԧ𝑃1 = 0

Ԧ𝑃2 = 0

Ԧ𝑃3 = 0

Ԧ𝑃4 = 0

Ԧ𝑃5 = 0

• Note that eigenharmonic 𝜈 is inherited by the daughters! 5



Angular momentum conservation

A string rotates as 
a rod with AM 
tensor ℳ𝜇𝜈

The chunk is deleted
to fragment the string, 
the missing AM 
appears

ℳ𝜇𝜈
miss is redistributed 

among daughters,  
their mass (=> length) 
is adjusted

• For a string of arbitrary generation, the angular 
momentum is defined by its mass: 𝐽 = 𝑀2/ 2𝜅𝜈Δ𝜎

• The missing chunk of the string carries AM 
𝐽miss = 𝑀2/ 2𝜅𝜈 𝜎br2 − 𝜎br1 , where 𝜎br1,2 are 
sampled break points

• 𝐽miss redistributes between string fragments: their 
masses 𝑀1, 𝑀2 are adjusted to match the total AM 

• Different proportion laws may be proposed to calculate 

the fraction of 𝐽miss taken by each fragment

• For 𝐽 ∝ 𝑀2:

𝑀1 =
𝑟1 − 𝑙1

𝑙2 − 𝑙1 𝑙2 − 𝑙1 − 𝑟2 + 𝑟1
𝑀,

𝑀2 =
𝑙2 − 𝑟2

𝑙2 − 𝑙1 𝑙2 − 𝑙1 − 𝑟2 + 𝑟1
𝑀.

𝜎 =
𝑟1𝜋

𝜈

𝜎 =
𝑟2𝜋

𝜈

𝜎 =
𝑙2𝜋

𝜈

𝜎 =
𝑙1𝜋

𝜈
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String-to-hadron transition

We adopt the following rules to model the transition from string to hadron:

1. The string may or may not become hadron after it is produced

2. The string must have the same flavor content as a potential hadron
• The type of the parton pair produced in the break point is sampled 

after the coordinates of the break point are selected according to 
Area Law

• Each pair type is assigned a relative probability of production

3. The end-point partons of the string must have the spin projection values 
that combine to the total spin of the hadron
• The spin projections for partons are sampled after the flavor
• The free parameter is used to define the relative probability for 

possible spin states

4. The value of the string mass must be close enough to the mass of hadron
• Another parameter is used to define the allowed relative difference
• To produce hadrons on-shell, the inter-string interaction is used to 

redistribute energy and momentum

𝑠𝑧2

𝑠𝑧1

ҧⅆ

𝑢

𝑠𝑧2

𝑠′𝑧2

𝑠′𝑧1

𝑢

ҧⅆ
ҧⅆ

ⅆ

𝑀1~𝑚𝜋

𝑠𝑧1

𝑀2~𝑚𝜌

𝜋+ 𝜌0

𝑆 = 0 𝑆 = 1
𝑃1

𝑃2
+ additional criteria? 7



First results: 𝑒+𝑒− collisions
𝑒+𝑒− → 𝛾∗, 𝑍 → hadronic, 𝑠 = 91.2 GeV

Pythia 8.315 Parton Level 

• More low-multiplicity events than in data, but note 
that data is extrapolated with JETSET (Pythia)

• Raw data is in much better agreement with the  model

𝜈~90 gives best description 
with no changes for higher 
values
➢ Low AM in ee collisions

ATROPOS-1.1.0-fs

ATROPOS-1.1.0-fs
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• Need to introduce gluon splitting 
to deal with high-𝑝T gluons



First results: 𝑒+𝑒− collisions, tuning the particles yield (preliminary!)

Rel. prob. for spin 
1 state probably 
needs to be higher

Very important:
𝑛𝜌0 : 𝑛𝜌+: 𝑛𝜌− =

𝟏. 𝟎𝟖: 𝟏: 𝟏

Note the good agreement 
of spectra for the new 

fragmentation mechanism!

ATROPOS-1.1.0-fs
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First results: 𝑝𝑝 collisions at LHC energies

• Multiplicities are sensitive to the low-limit mass of the string and to the eigenharmonic value 𝝂:
➢ Best agreement for 𝑀low~7 GeV (but may change with proper hard gluons treatment)
➢ Eigenvalue 𝝂 ≈ 80 − 90, but not higher (or too hard multiplicity spectra)!
➢ Rotation for pp is sensible at this energies

𝑝𝑝, 𝑠 = 7 TeV
Pythia 8.315 SoftQCD (default tune)

Parton Level 

ATROPOS-1.1.0-fsATROPOS-1.1.0-fs

Preliminary!Preliminary!
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First results: 𝑝𝑝 collisions at LHC energies

• String decay is governed by the Area Decay 
Law (Artru and Mennesieur):

d𝑃

𝜅d𝐴
= const ≡ 𝑃0,

where 𝐴 is an invariant area of the world sheet 
of the string.

• In ATROPOS:

𝑃 𝜏 ∝ exp −
𝑃0𝑀

2𝜏

2𝜅 𝜎2 − 𝜎1
• It seems that the best fit is obtained when 𝑃0 is 

taken to be slowly increasing with string mass

• Small values of 𝑃0 lead to too high transverse 
momentum of final hadrons
➢ A reliable way to tune 𝑷𝟎!

• Increases forward particle production for 
heavier strings!

Smaller 𝑃0 gives more time 
for the string to rotate

ATROPOS-1.1.0-fs
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First results: 𝜋−C collisions

𝜋−C, 𝑝 = 158 GeV
Angantyr Parton Level 

• Qualitatively good agreement, 
but not ideal
➢ Low-energy physics needs 

improvement

• Best fit for eigenvalue 𝝂 ≈ 20!
➢ Already noticeable AM
➢ But also driven by need to 

keep low-mass limit

• Light-string behavior is 
important (mini-string in Pythia)

ATROPOS-1.1.0-fs

NA61 dataNA61 data

NA61 data NA61 data

12



Impact on the EAS physics

• Electromagnetic energy ratio is an essential 
parameter for muon production in EAS 
(H. Dembinski, T. Pierog)

• Affected by leading 𝜋0 fraction and neutral-to-
charged pions ratio

• ATROPOS shows decreasing 𝑅em at 𝑠 > 1 TeV
➢ That is due to the hadron production 

mechanism: hadron selection is based on 
mass and spin sampling, so at higher energies 
more heavy resonances are produced

➢ Suppressed direct production of light mesons

• But more tests and tuning are required
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Summary
• ATROPOS is the first string hadronization model to implement angular momentum conservation to the 

fragmentation process.

• A string in ATROPOS is seen as a rigidly rotating “folded” rod with “joints” being the only permitted points 
for string breaking
➢ Forward particle production is enhanced for large-mass strings

• The fragmentation in ATROPOS is non-universal for different collision systems: different AM values favor 
ee, pp and hA collisions. 

Plans for future:

• Integrate ATROPOS in CRMC package (R. Ulrich, T. Pierog and C. Baus) to allow interface with CR models

• Integration into EPOS.LHC-R (with Tanguy Pierog): work in progress
➢ First test runs in coming weeks…

• Optimize computation time: use pre-generated tables of string fragmentation modes
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Thank you for your attention!



BACK UP SLIDES



Orthonormal gauge in the Nambu-Goto theory

Nambu-Goto string action:

𝑆string = −𝜅න
𝜎1

𝜎2

ⅆ𝜎න
𝜏1 𝜎

𝜏2 𝜎

ⅆ𝜏 𝑥′ ሶ𝑥 2 − 𝑥′2 ሶ𝑥2

It produces the following equations of motion (EM):

𝜕

𝜕𝜏

ሶ𝑥𝑥′ 𝑥𝜇
′ − 𝑥′

2
ሶ𝑥𝜇

ሶ𝑥𝑥′ 2 − ሶ𝑥2𝑥′2
+

𝜕

𝜕𝜎

ሶ𝑥𝑥′ ሶ𝑥𝜇 − ሶ𝑥2𝑥𝜇
′

ሶ𝑥𝑥′ 2 − ሶ𝑥2𝑥′2
= 0.

To simplify the EM, a special gauge is selected to define two relations between 𝜏 and 𝜎:

ሶ𝒙𝟐 + 𝒙′
𝟐
= 𝟎, ሶ𝒙𝒙′ = 𝟎.

It is called an orthonormal gauge and allows to simplify the EM:

ሷ𝑥𝜇 − 𝑥𝜇
′′ = 0.

𝑥𝜇 𝜏, 𝜎 is a 2-parameter definition of 

the string world sheet, where 𝜎 
numerates the points of the string, 
and 𝜏 defines the evolution in time.

ሶ𝑥𝜇 ≡
𝜕𝑥𝜇 𝜏, 𝜎

𝜕𝜏

𝑥𝜇
′ ≡

𝜕𝑥𝜇 𝜏, 𝜎

𝜕𝜎
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Substitute the solution to the EM into the orthonormal gauge expressions:

𝑥𝜇 𝜏, 𝜎 = 𝑄𝜇 + 𝑃𝜇
𝜏

𝜋𝜅
+

𝑖

𝜋𝜅
෍

𝑛≠0
𝑛=−∞

+∞

𝑒−𝑖𝑛𝜏
𝛼𝑛𝜇

𝑛
cos 𝑛𝜎 ቊ ሶ𝑥2 + 𝑥′

2
= 0

ሶ𝑥𝑥′ = 0.

The resulting set of equalities is called the Virasoro conditions:

෍

𝒎=−∞

+∞

𝜶𝒏−𝒎 𝜶𝒎 = 𝟎, 𝒏 = 𝟎,±𝟏,±𝟐,…

Here 𝛼𝑛𝜇 are Fourier amplitudes defined as

𝛼𝑛𝜇 =
𝜅

𝜋
න
0

𝜋

ⅆ𝜎 cos 𝑛𝜎 𝑣𝜇 𝜎 − 𝑖𝑛𝜌𝜇 𝜎 , 𝑛 ≠ 0, 𝛼0𝜇 =
𝑃𝜇

𝜅𝜋
.

The functions 𝒗𝝁 𝝈 and 𝝆𝝁 𝝈 define velocity and coordinates of the string at the initial moment in time.

• Thus, the Virasoro conditions restrict the initial data of the boundary-value problem for the string motion.

How Virasoro conditions restrict the string motion
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FOEE method to define the initial conditions of the string

The problem:
Most of the functions do not satisfy the Virasoro conditions if the string is massive (𝑀 ≠ 0)

A new method: 
• Let us express the initial data functions as a finite series over the Sturm-Liouville boundary problem 

eigenfunctions (Final-Order Eigenfunction Expansion, FOEE):

𝑣𝜇 𝜎 = 𝑎0𝜇𝑢0 𝜎 +෍

𝑘=1

𝑁

𝑎𝑘𝜇𝑢𝑘 𝜎 , 𝜌𝜇 𝜎 = 𝑏0𝜇𝑢0 𝜎 +෍

𝑘=1

𝑁

𝑏𝑘𝜇𝑢𝑘 𝜎 .

• For a free string:

𝑣𝜇 𝜎 = 𝑎0𝜇 +෍

𝑘=1

𝑁

𝑎𝑘𝜇 cos 𝑘𝜎 , 𝜌𝜇 𝜎 = 𝑏0𝜇 +෍

𝑘=1

𝑁

𝑏𝑘𝜇 cos 𝑘𝜎 .
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Constructing the FOEE system

• The eigenfunctions of the S.-L. problem are orthogonal, so the system is finite:

෍

𝑚=max 𝑛−𝑁,−𝑁
𝑚≠0,𝑚≠𝑛

min(𝑛+𝑁,𝑁)

𝑎𝑛−𝑚𝑎𝑚 −𝑚 𝑛 −𝑚 𝑏𝑛−𝑚𝑏𝑚 +
4

𝜅𝜋
𝑃𝑎𝑛 = 0

෍

𝑚=max 𝑛−𝑁,−𝑁
𝑚≠0,𝑚≠𝑛

min(𝑛+𝑁,𝑁)

𝑚𝑎𝑛−𝑚𝑏𝑚 + 𝑛 −𝑚 𝑎𝑚𝑏𝑛−𝑚 −
4𝑛

𝜅𝜋
𝑃𝑏𝑛 = 0,

𝑛 ≠ 0,

෍
𝑚=−𝑁
𝑚≠0

𝑁

𝑎−𝑚𝑎𝑚 +𝑚2𝑏−𝑚𝑏𝑚 = −
2𝑃2

𝜅𝜋 2

෍
𝑚=−𝑁
𝑚≠0

𝑁

𝑚 𝑎−𝑚𝑏𝑚 − 𝑎𝑚𝑏−𝑚 = 0.

• Add conservation laws:

𝜅න
0

𝜋

ⅆ𝜎 𝑣𝜇 𝜎 = 𝜅න
0

𝜋

ⅆ𝜎 ሶ𝑥𝜇 0, 𝜎 = 𝑃𝜇 ,

𝜅 න
0

𝜋

ⅆ𝜎 𝜌𝜇 𝜎 𝑣𝜈 𝜎 − 𝜌𝜈 𝜎 𝑣𝜇 𝜎 = 𝜅න
0

𝜋

ⅆ𝜎 𝑥𝜇 0, 𝜎 ሶ𝑥𝜈 0, 𝜎 − 𝑥𝜈 0, 𝜎 ሶ𝑥𝜇 0, 𝜎 = 𝑀𝜇𝜈 .
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The FOEE system: 1st order 

𝑣𝜇 𝜎 = 𝑎𝜇 + 𝑏𝜇 cos 𝜎

𝜌𝜇 𝜎 = 𝑐𝜇 + ⅆ𝜇 cos 𝜎
The initial data functions:

Fourier amplitudes

𝛼0𝜇 =
𝑃𝜇

𝜅𝜋

𝛼1𝜇 =
𝜅𝜋

2
𝑏𝜇 − 𝑖ⅆ𝜇

𝛼−1𝜇 =
𝜅𝜋

2
𝑏𝜇 + 𝑖ⅆ𝜇

𝑏2 − ⅆ2 = 0
𝑏ⅆ = 𝑏𝑃 = ⅆ𝑃 = 0

𝑏2 +
2𝑃2

𝜅𝜋 2
= 0

System of the Virasoro conditions:

𝑎𝜇 =
𝑃𝜇

𝜅𝜋
4-momenta conservation gives:

𝑐𝜇𝑃𝜈 − 𝑐𝜈𝑃𝜇 +
𝜅𝜋

2
ⅆ𝜇𝑏𝜈 − ⅆ𝜈𝑏𝜇 = 𝑀𝜇𝜈 .AM tensor conservation:

15 equations, 16 variables

• Very difficult to solve the system due to its non-linearity.
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FOEE(1)-string in the center-of-mass

• Define the string with:

𝑃0 ≡ 𝑀, 𝑃𝑖 = 0, 𝑖 = 1, 2, 3.

• Rotate the coordinate system so that string rotation occurred in a XZ-plane:

ℳ𝜇𝜈 =

0 0
0 0

0 0
0 ℳ13

0 0
0 −ℳ13

0 0
0 0

.

Get the following initial data functions:

𝒗𝝁
∗ 𝝈 = 𝜿𝝅 −𝟏𝑴 𝜹𝟎𝝁 + 𝜹𝟏𝝁 𝐜𝐨𝐬 𝝈 , 𝝆𝝁

∗ 𝝈 = − 𝜿𝝅 −𝟏𝝃𝑴𝜹𝟑𝝁 𝐜𝐨𝐬 𝝈 ,

wher 𝛿𝜇𝜈 is the Kronecker delta, 𝜉 is a string rotation signature:

𝝃 = 𝐬𝐢𝐠𝐧𝓜𝟏𝟑.
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FOEE(1)-string in the center-of-mass

• Obtain the following formula for string coordinates:

𝒙𝝁 𝝉, 𝝈 = 𝜿𝝅 −𝟏𝑴 𝜹𝟎𝝁𝝉 + 𝜹𝟏𝝁 𝐬𝐢𝐧 𝝉 − 𝝃𝜹𝟑𝝁 𝒄𝒐𝒔 𝝉 𝒄𝒐𝒔 𝝈 .

• An important relation:

𝟐𝜿𝝅 𝓜𝟏𝟑 = 𝑴𝟐.

➢ String must rotate (have spin) to be massive!

• important: FOEE(1)-string satisfies the conditions for the tangent 
vectors to the string world sheet.

FOEE(1)-string rotates as a rigid rod in CM
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FOEE(1)-string in arbitrary system
Lorentz boost to the system where string has 

momentum  𝑃:

𝑣0 𝜎 =
𝑃0𝑣0

∗ 𝜎 + 𝑃 Ԧ𝑣∗ 𝜎

𝑀
,

Ԧ𝑣 𝜎 = Ԧ𝑣∗ 𝜎 + 𝑃
𝑣0 𝜎 + 𝑣0

∗ 𝜎

𝑃0 +𝑀
.

Rotate the coordinate axis:

𝑅 𝜗, 𝜑 =
cos𝜑 − sin𝜑 cos 𝜗 sin𝜑 sin 𝜗
sin𝜑 cos𝜑 cos 𝜗 − cos𝜑 sin𝜗
0 sin 𝜗 cos 𝜗

,

cos 𝜗 =
𝑝𝑧

𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2

, cos𝜑 =
𝑝𝑦

𝑝𝑥
2 + 𝑝𝑦

2

.

Ԧ𝑝1 = 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧

Ԧ𝑝2 = − Ԧ𝑝1 𝜗

𝑥

𝑧

𝑦

෤𝑥

ǁ𝑧

෤𝑦

𝜑

The scheme of the coordinate axis rotation 
in the CM of the string
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FOEE(1)-string in arbitrary system

Initial conditions:

𝒗𝝁 𝝈 = 𝜿𝝅 −𝟏 𝑷𝝁 + 𝝃 𝑴𝝍𝝁 − 𝑷𝝍 𝝌𝝁 𝐜𝐨𝐬 𝝈 , 𝝆𝝁 𝝈 = 𝜿𝝅 −𝟏 𝑴𝝀𝝁 − 𝑷𝝀 𝝌𝝁 𝐜𝐨𝐬 𝝈 ,

𝜓𝜇 =

0
sin𝜑 sin 𝜗
−cos𝜑 sin 𝜗

cos 𝜗

, 𝜆𝜇 =

0
cos𝜑
sin𝜑
0

, 𝜒0 ≡ 1, Ԧ𝜒 =
𝑃

𝑃0 +𝑀
.

The formula for the coordinates of the string:

𝒙𝝁 𝝉, 𝝈 = 𝜿𝝅 −𝟏 𝑷𝝁𝝉 + 𝑴𝜴𝝁 𝝉 − 𝑷𝜴 𝝉 𝝌𝝁 𝒄𝒐𝒔 𝝈 ,

𝛺𝜇 𝜏 = 𝜆𝜇 cos 𝜏 + 𝜉𝜓𝜇 sin 𝜏 , 𝛬𝜇 𝜏 = 𝜓𝜇 cos 𝜏 − 𝜉𝜆𝜇 sin 𝜏 .
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Examples of the FOEE(1)-string motion

Motion of FOEE(1)-string of mass 12 GeV and 𝑃𝑧 = 2 GeV
Motion of FOEE(1)-string of mass 10 GeV and 

𝑃𝑧 =100 GeV
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Generalization for the case of the higher order eigenharmonic

൝
𝑣𝜇 𝜎 = 𝑎𝜇 + 𝑏𝜇 cos 𝜎

𝜌𝜇 𝜎 = 𝑐𝜇 + ⅆ𝜇 cos 𝜎

• FOEE(1)-string can have eigenharmonic with non-zero amplitude of arbitrary order:

൝
𝑣𝜇 𝜎 = 𝑎𝜇 + 𝑏𝜇 cos 𝝂𝜎

𝜌𝜇 𝜎 = 𝑐𝜇 + ⅆ𝜇 cos 𝝂𝜎

• The resulting equation of motion is similar to the case 𝝂 = 𝟏:

𝒙𝝁 𝝉, 𝝈 = 𝜿𝝅 −𝟏 𝑷𝝁𝝉 + 𝝂−𝟏 𝑴𝜴𝝁 𝝉, 𝝂 − 𝑷𝜴 𝝉, 𝝂 𝝌𝝁 𝒄𝒐𝒔 𝝈 ,

𝛺𝜇 𝜏, 𝝂 = 𝜆𝜇 cos 𝝂𝜏 + 𝜉𝜓𝜇 sin 𝝂𝜏 .

𝝂 is natural number
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Some features of the model

1. The string fragmentation process is naturally limited: there is always a last “fragmentable” string 
composed of the 3 segments (2 in case the production at rest is permitted)

(string is shown “unfolded”)

The “shortest” string that can fragment No more “joints” on the daughters -> fragmentation stops

2. Close-to-Regge behavior of the spin-mass 
relation for light daughter strings

• The connection between the slope of the Regge
trajectory 𝛼 and the string tension 𝜅 is derived 
in the string theory based on 𝐽(𝑀) dependence:

𝛼 = 2𝜅𝜋 −1

• This would lead to huge AM for heavy strings, 
but in the ATROPOS model, the proportionality 
coefficient between 𝐽 and 𝑀2 decreases with 
the daughter string generation.

An example of 
sampled values of the 
daughter strings AM 

for a primary string of 
mass 𝑀 = 100 GeV 
and with 𝜈 = 104
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First results: 𝑝𝑝 collisions at LHC energies
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First results: 𝑒+𝑒− collisions, additional

ATROPOS-1.1.0-fs
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Free parameters tuning: set FPS-55

Parameter Physical meaning Value

𝜅 String tension 0.2 GeV2

𝑃0 Area Decay constant 𝑃0 = 0.3 + 1.7 Τ𝑀string (7 TeV)

𝑃𝑢ഥ𝑢 = 𝑃𝑑 ത𝑑 Relative pair production probability 0.3645

𝑃𝑠 ҧ𝑠 Relative pair production probability 0.12

𝑃𝑢𝑢𝑢𝑢 = 𝑃𝑑𝑑𝑑𝑑 = 𝑃𝑢𝑑𝑢𝑑 Relative pair production probability (diquark) 0.04

𝑃𝑢𝑠𝑢𝑠 = 𝑃𝑑𝑠𝑑𝑠 Relative pair production probability (diquark) 0.015

𝑃𝑠𝑠𝑠𝑠 Relative pair production probability (diquark) 0.001

SHMT
String-to-hadron transition mass tolerance 

(relative to hadron mass)
0.1

DIQ01S
Suppression of spin 1 state to spin 0 for 

diquarks in pairs (if diff. flavor)
0.3

HFSS
Suppression of co-directional spin projections 

of string end-point partons
0.5 (probably too strong suppression)

𝑀indiv
Indivisible string mass (low-mass limit -> phase 

decay) 
11 GeV for ee and 𝜋C, 7 GeV for pp (hard 

gluons are important)
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